代数学 I 第6回レポート課題解答例

担当:大矢 浩徳 (OYA Hironori)*

問題 1

3次対称群

$$\mathfrak{S}_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}$$

の各元の位数を求めよ.

問題1解答例。

$$\operatorname{ord} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = 1 \qquad \operatorname{ord} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = 2 \qquad \operatorname{ord} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = 2 \\
 \operatorname{ord} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = 3 \qquad \operatorname{ord} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = 3 \qquad \operatorname{ord} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = 2.$$

問題 1 補足解説. 群 G において, $g \in G$ の位数 $\operatorname{ord}(g) := |\langle g \rangle|$ は $\operatorname{ord}(g) < \infty$ のとき,

 $\mathbb{F}g^m=e$ となる最小の正の整数 m』

であった. (G が有限群の場合,必ず $\operatorname{ord}(g)<\infty$ であることに注意.)よって元 g の位数を求めるためには g を何度もかけて,初めて単位元に戻るときを調べればよい.例えば, $\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix}\in\mathfrak{S}_3$ の場合,

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} (\leftarrow \stackrel{\text{\tiny μ}}{\cancel{\square}} \stackrel{\text{\tiny μ}}{\cancel{\square}})$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}^3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

となるので、 $\operatorname{ord} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = 3$ である.

問題 2

G を巡回群でない位数 14 の群とする. 元 $g \in G$ が $g^2 \neq e$ (e は G の単位元) を満たすとき,g の位数を求めよ.

問題 2 解答例. Lagrange の定理の系より、 $\operatorname{ord}(g)$ は |G|=14 の約数である. よって、 $\operatorname{ord}(g)$ は 1,2,7,14 の いずれかである. ここで、 $\operatorname{ord}(g)=1$ または 2 とすると、 $g^2=e$ となるので仮定に反する. また、 $\operatorname{ord}(g)=14$ とすると、位数の定義より $|\langle g \rangle|=14$ となるが、|G|=14 より、このとき $G=\langle g \rangle$ となる. これは、G が巡回群でないという仮定に反する.

以上より、
$$\operatorname{ord}(g) = 7$$
 である.

 $^{^*}$ $e ext{-}mail:$ hoya@shibaura-it.ac.jp

問題 2 補足解説. Lagrange の定理の系より、 $\operatorname{ord}(g)$ が |G|=14 の約数であることが言えるが、この $\operatorname{ord}(g)$ の候補は 1,2,7,14 であり、特に 1 と 14 も候補であることに注意する.一般の群 G の元 g に対し、

- (i) $\operatorname{ord}(g) = 1$ ならば、g は単位元 e,
- (ii) $\operatorname{ord}(g) = |G|(<\infty)$ ならば、 $G = \langle g \rangle$ 、つまり、G は g を生成元とする巡回群、

であることが言える. なお、問題 2 の群 G の具体例としては 7 次 2 面体群 D_7 が挙げられ、この場合 g の例としては σ^k $(1 \le k \le 6)$ が挙げられる. さらに、実は巡回群でない位数 14 の群は D_7 と同型なものしか存在しないことが知られている.