On some reducible representations of the quantized coordinate algebras

Hironori Oya

The University of Tokyo
21st Conference on Algebra for Young Researchers in Japan Nara Women's University, 29/3/2016

Subjects

Main objects: Representations of quantized coordinate algebras for

For any sequence \mathbf{i} of the indices of simple roots, we can construct a module V_{i} over the quantized coordinate algebra.

Theorem (Soibelman ('90))

The module V_{i} is irreducible if and only if \mathbf{i} is a reduced word of an element of the Weyl group.
(Naive) problem: Describe the structure of $V_{\mathbf{i}}$ in the case that \mathbf{i} does not correspond to a reduced word.

How do we "describe" V_{i} ?

Key: Kuniba-Okado-Yamada's result ('13);
There exists a "natural" (but somewhat mysterious) isomorphism between

- the module $V_{\mathrm{i}_{0}}$ corresponding to the longest element w_{0}, and
- (the positive half of) the quantized enveloping algebra U^{+}.

Through this result, we can say that
"the structure of $V_{\mathbf{i}_{0}}$ is described by the algebra structure of U^{+}".
\rightsquigarrow How about the other i's?
Our target: The modules V_{i} for $\tilde{\mathbf{i}}=\left(i_{l}, \ldots, i_{1}, i_{1}, \ldots, i_{l}\right)$ with $\left(i_{1}, \ldots, i_{l}\right)$ is a reduced word of an element of the Weyl group. (In particular, they include the case $V_{(i, i)}$.)

Quantized enveloping algebras

Basic notation: Let

- \mathfrak{g} a symmetrizable Kac-Moody Lie algebra(\supset finite dimensional simple Lie algebra) over \mathbb{C},
- P the weight lattice of \mathfrak{g} and $\left\{\alpha_{i}^{(\vee)}\right\}_{i \in I}$ the simple (co)roots of \mathfrak{g},
- $U_{q}\left(:=U_{q}(\mathfrak{g})\right)$ the quantized enveloping algebra over $\mathbb{Q}(q)$; Chevalley generator: $E_{i}, F_{i}(i \in I), K_{h}\left(h \in P^{*}\right)$, Some relations: $K_{h} E_{i}=q^{\left\langle\alpha_{i}, h\right\rangle} E_{i} K_{h}, q$-Serre relations, \ldots
(This is a q-analogue of $U(\mathfrak{g})$),
- $U_{q}^{+(\text {resp. }-)}$ the subalgebra of U_{q} generated by E_{i} 's (resp. F_{i} 's). $\underline{\text { Hopf algebra structure of } U_{q}}\left(K_{i}:=K_{\frac{\left(\alpha_{i}, \alpha_{i}\right)}{2} \alpha_{i}^{\vee}}\right)$

$$
\begin{gathered}
\Delta\left(E_{i}\right)=E_{i} \otimes K_{i}^{-1}+1 \otimes E_{i}, \Delta\left(F_{i}\right)=F_{i} \otimes 1+K_{i} \otimes F_{i}, \Delta\left(K_{h}\right)=K_{h} \otimes K_{h} \\
\varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0, \varepsilon\left(K_{h}\right)=1, \exists \text { antipode }
\end{gathered}
$$

Quantized coordinate algebras

Definition

The quantized coordinate algebra $A_{q}[\mathfrak{g}]$ is a subalgebra of U_{q}^{*} generated (in fact, spanned) by the matrix coefficients

$$
c_{f, v}^{\lambda}\left(:=c_{f, v}^{V(\lambda)}\right):=(X \mapsto\langle f, X . v\rangle),
$$

here

- $\lambda \in P_{+}:=\left\{\mu \in P \mid\left\langle\mu, \alpha_{i}^{\vee}\right\rangle \geq 0\right.$ for all $\left.i \in I\right\}$,
- $V(\lambda)$ the integrable highest weight U_{q}-module with highest weight λ,
- $v \in V(\lambda), f \in V(\lambda)_{\mathrm{gr}}^{*}($ the graded dual of $V(\lambda))$.
$\ln A_{q}[\mathfrak{g}]$, we have

$$
c_{f, v}^{\lambda} v_{f^{\prime}, v^{\prime}}^{\lambda^{\prime}}=c_{f \otimes f^{\prime}, v \otimes v^{\prime}}^{V(\lambda)} .
$$

An important example

The quantized coordinate algebra $A_{q}\left[\mathfrak{s l}_{2}\right]$ of $\mathfrak{s l}_{2}$ is isomorphic to the $\mathbb{Q}(q)$-algebra generated by $c_{i j}(i, j \in\{1,2\})$ with the following relations; (If " $q=1$ ", then the first six relations are the same.)

$$
\begin{array}{cl}
c_{i 1} c_{i 2}=q c_{i 2} c_{i 1}(i=1,2), & c_{1 j} c_{2 j}=q c_{2 j} c_{1 j}(j=1,2) \\
{\left[c_{12}, c_{21}\right]=0,} & {\left[c_{11}, c_{22}\right]=\left(q-q^{-1}\right) c_{12} c_{21}} \\
c_{11} c_{22}-q c_{12} c_{21}=1
\end{array}
$$

Indeed the isomorphism of algebras is given by

$$
c_{i j} \mapsto c_{f_{i}, v_{j}}^{V(\varpi)},
$$

where $V(\varpi)$ is an irreducible 2-dimensional representation of $U_{q}\left(\mathfrak{s l}_{2}\right)$ with a highest weight vector v_{1} and $v_{2}=F . v_{1}$, and $\left\{f_{1}, f_{2}\right\}$ is its dual basis.

The module V_{\star} of $A_{q}\left[\mathfrak{s}_{2}\right]$

We have an $A_{q}\left[\mathfrak{s l}_{2}\right]$-module $V_{\star}:=\bigoplus_{m \in \mathbb{Z}_{\geq 0}} \mathbb{Q}(q)|m\rangle$ given by

$$
\begin{array}{ll}
c_{11}:|m\rangle \longmapsto \begin{cases}0 & \text { if } m=0, \\
|m-1\rangle & \text { if } m \in \mathbb{Z}_{>0},\end{cases} \\
c_{12 .}:|m\rangle \longmapsto-q^{m+1}|m\rangle & \text { for } m \in \mathbb{Z}_{\geq 0}, \\
c_{21}:|m\rangle \longmapsto q^{m}|m\rangle & \text { for } m \in \mathbb{Z}_{\geq 0}, \\
c_{22}:|m\rangle \longmapsto\left(1-q^{2(m+1)}\right)|m+1\rangle & \text { for } m \in \mathbb{Z}_{\geq 0} .
\end{array}
$$

By its construction, it is easy to see that this is an irreducible $A_{q}\left[\mathfrak{s l}_{2}\right]$-module.

The module V_{i} of $A_{q}[\mathfrak{g}]$

For $i \in I$, we denote by $U_{q_{i}, i}$ the Hopf subalgebra of U_{q} generated by $\left\{E_{i}, F_{i}, K_{i}^{ \pm 1}\right\}$.
The Hopf algebra $U_{q_{i} i}$ is isomorphic to $U_{q_{i}}\left(\mathfrak{s l}_{2}\right)\left(q_{i}:=q^{\frac{\left(\alpha_{i}, \alpha_{i}\right)}{2}}\right)$.
\rightsquigarrow We can regard $\mathbb{Q}(q) \otimes_{\mathbb{Q}\left(q_{i}\right)} A_{q_{i}}\left[\mathfrak{s l}_{2}\right]$ as a subalgebra of $U_{q_{i} i}^{*}$ and denote this subalgebra by A_{i}.
The irreducible module V_{\star} corresponding to A_{i} will be denoted by $V_{i}:=\oplus_{m \in \mathbb{Z} \geq 0} \mathbb{Q}(q)|m\rangle_{i}$.
For $\mathbf{i}=\left(i_{1}, \ldots, i_{l}\right) \in I^{l}$, set $m_{\mathbf{i}}: U_{q_{i_{1}}, i_{1}} \otimes \cdots \otimes U_{q_{i}, i_{l}} \xrightarrow{\text { multiplication }} U_{q}$. $\rightsquigarrow \exists$ the algebra homomorphism $m_{\mathfrak{i}}^{*}: A_{q}[\mathfrak{g}] \rightarrow A_{i_{1}} \otimes \cdots \otimes A_{i_{l}}$. Via $m_{\mathbf{i}}^{*}$, the $\mathbb{Q}(q)$-vector space $V_{\mathbf{i}}:=V_{i_{1}} \otimes \cdots \otimes V_{i_{l}}$ is regarded as an $A_{q}[\mathfrak{g}]$-module.

The case: i is a reduced word

Let W be the Weyl group of \mathfrak{g}.
For $w \in W$, denote by $I(w)$ the set of the reduced words of w. (ex. $\mathfrak{g}=\mathfrak{s l}_{3}, w_{0}$ the longest element, $I\left(w_{0}\right)=\{(1,2,1),(2,1,2)\}$.)

Theorem (Soibelman, Narayanan, Tanisaki, (O-))

The $A_{q}[\mathfrak{g}]$-module $V_{\mathbf{i}}$ is irreducible if and only if $\mathbf{i} \in I(w)$ for some $w \in W$.
Moreover, for $\mathbf{i}_{1}, \mathbf{i}_{2} \in I(w)$, there is an isomorphism of $A_{q}[\mathfrak{g}]$-modules $V_{\mathbf{i}_{1}} \rightarrow V_{\mathbf{i}_{2}}$ given by

$$
|(0)\rangle_{\mathbf{i}_{1}} \mapsto|(0)\rangle_{\mathbf{i}_{2}} .
$$

Hence we denote the module $V_{\mathbf{i}}(\mathbf{i} \in I(w))$ by V_{w}. (i. e. The modules $\left\{V_{\mathbf{i}}\right\}_{\mathbf{i} \in I(w)}$ are identified via the above isomorphism.)

KOY's isomorphism: preliminaries

Definition (The quantum nilpotent subalgebras $U_{q}(w)^{ \pm}$)

For $w \in W$ and $\mathbf{i}=\left(i_{1}, \ldots, i_{l}\right) \in I(w)$, set

$$
\begin{aligned}
& E_{\mathbf{i}}^{\mathbf{c}}:=E_{i_{l}}^{\left(c_{l}\right)} T_{i_{l}, 1}^{\prime}\left(E_{i_{l-1}}^{\left(c_{l-1}\right)}\right) \cdots T_{i_{l}, 1}^{\prime} \cdots T_{i_{2}, 1}^{\prime}\left(E_{i_{1}}^{\left(c_{1}\right)}\right), \text { and } \\
& F_{\mathbf{i}}^{\mathbf{c}}:=F_{i_{l}}^{\left(c_{l}\right)} T_{i_{l}, 1}^{\prime \prime}\left(F_{i_{l-1}}^{\left(c_{l-1}\right)}\right) \cdots T_{i_{l}, 1}^{\prime \prime} \cdots T_{i_{2}, 1}^{\prime \prime}\left(F_{i_{1}}^{\left(c_{1}\right)}\right),
\end{aligned}
$$

where $\mathbf{c}=\left(c_{1}, \ldots, c_{l}\right) \in \mathbb{Z}_{\geq 0}^{l}, X_{i}^{(c)}$ denotes the divided power and $T_{i_{l}, 1}^{\prime}, T_{i, 1}^{\prime \prime}$ are q-analogues of the actions of the braid group.
The set $\left\{E_{\mathbf{i}}^{\mathbf{c}}\left(\text { resp. } F_{\mathbf{i}}^{\mathbf{c}}\right)\right\}_{\mathbf{c}}$ is a linearly independent set of $U_{q}^{+(\text {resp. }-)}$.
Let us denote by $U_{q}^{+(\text {resp. }-)}(w)$ the $\mathbb{Q}(q)$-vector subspace of $U_{q}^{+(\text {resp. }-)}$ spanned by $\left\{E_{\mathbf{i}}^{\mathbf{c}}\left(\text { resp. } F_{\mathbf{i}}^{\mathbf{c}}\right)\right\}_{\mathbf{c}}$. Here $U_{q}^{ \pm}(e)=\mathbb{Q}(q)\left(\subset U_{q}^{ \pm}\right)$. In fact these subspaces do not depend on the choice of $\mathbf{i} \in I(w)$.
ex. $\mathfrak{g}=\mathfrak{s l}_{3}, X_{(1,2,1)}^{(1,1,2)}=X_{1}^{(2)}\left(X_{2} X_{1}-q X_{1} X_{2}\right) X_{2}(X=E, F)$.

KOY's isomorphism

Let $U_{q}^{ \pm}(w)^{\perp}$ be the orthogonal complements of $U_{q}^{ \pm}(w)$ with respect to the Lusztig type bilinear forms on $U_{q}^{ \pm}$. Then they are left ideals of $U_{q}^{ \pm}$.
Denote the quotient maps $U_{q}^{ \pm} \rightarrow U_{q}^{ \pm} / U_{q}^{ \pm}(w)^{\perp}$ by $X \mapsto[X]_{w}$. Note that $\left\{\left[E_{\mathbf{i}}^{\mathbf{c}}\right]_{w}\left(\text { resp. }\left[F_{\mathbf{i}}^{\mathbf{c}}\right]_{w}\right)\right\}_{\mathbf{c}}$ is a basis of $U_{q}^{ \pm} / U_{q}^{ \pm}(w)^{\perp}$ respectively.

Theorem (Kuniba-Okado-Yamada, Saito, Tanisaki, (O-))

Let $\mathbf{i} \in I(w)$. Define the $\mathbb{Q}(q)$-linear isomorphism

$$
\Phi_{\mathrm{KOY}}^{+,+w}: V_{w} \rightarrow U_{q}^{+} / U_{q}^{+}(w)^{\perp} \text { by }|\mathbf{c}\rangle_{\mathbf{i}} \mapsto\left[E_{\mathbf{i}}^{\mathrm{c}}\right]_{w},
$$

where $|\mathbf{c}\rangle_{\mathbf{i}}:=\left|c_{1}\right\rangle_{i_{1}} \otimes \cdots \otimes\left|c_{l}\right\rangle_{i_{l}}$. Then $\Phi_{\text {KOY }}^{+, w}$ is well-defined.
(i. e. does not depend on the choice of $\mathbf{i} \in I(w)$.)

Moreover, when we identify V_{w} with $U_{q}^{+} / U_{q}^{+}(w)^{\perp}$ via $\Phi_{\mathrm{KOY}}^{+, w}$, the multiplication operator E_{i}. is explicitly written in terms of the matrix coefficients.

Towards the non-reduced word case

Technical modification:
$\check{U}_{q}^{0}:=$ the group algebra of P over $\mathbb{Q}(q)\left(=: \bigoplus_{\lambda \in P} \mathbb{Q}(q) K_{\lambda}\right)$.
Set $\check{U}_{q}^{\gtrsim} 00=U_{q}^{ \pm} \check{U}_{q}^{0}$. (i. e. $K_{\lambda} E_{i}=q^{\left(\alpha_{i}, \lambda\right)} E_{i} K_{\lambda}$ etc.)
Note that $U_{q}^{ \pm} / U_{q}^{ \pm}(w)^{\perp}$ can be regarded as $\check{U}_{q}^{\gtrsim 0}$-modules by $K_{\lambda \cdot} \cdot[1]_{w}=[1]_{w}$ for all $\lambda \in P$.

Key Tool

There exists an embedding $\Omega: A_{q}[\mathfrak{g}] \rightarrow \check{U}_{q}^{\leq 0} \otimes \check{U}_{q}^{\geq 0}$ of $\mathbb{Q}(q)$-algebras using the Drinfeld pairing (cf. Joseph's textbook).

An example

Let $\mathfrak{g}=\mathfrak{s l}_{2}$. The weight lattice of $\mathfrak{s l}_{2}$ is written as $P=\mathbb{Z} \varpi$ (ϖ is the fundamental weight). Then

$$
\begin{aligned}
& \Omega\left(c_{11}\right)=K_{-\varpi} \otimes K_{\varpi}, \\
& \Omega\left(c_{12}\right)=\left(1-q^{2}\right) K_{-\infty} \otimes E K_{\varpi}, \\
& \Omega\left(c_{21}\right)=\left(1-q^{2}\right) F K_{-\varpi} \otimes K_{\varpi}, \\
& \Omega\left(c_{22}\right)=\left(1-q^{2}\right)^{2} F K_{-\varpi} \otimes E K_{\varpi}+K_{\varpi} \otimes K_{-\varpi} .
\end{aligned}
$$

(Note that $K_{\varpi} E=q E K_{\varpi}, K_{\varpi} F=q^{-1} F K_{\varpi}$)
$\rightsquigarrow \mathcal{S}:=\left\{c_{11}^{n}\right\}_{n \geq 0}$ is an Ore set in $A_{q}\left[\mathfrak{s l}_{2}\right]$ and $A_{q}\left[\mathfrak{s l}_{2}\right]\left[\mathcal{S}^{-1}\right]$ is isomorphic to $\bigoplus_{n \in \mathbb{Z}} U_{q}^{-} K_{-n \omega} \otimes U_{q}^{+} K_{n \omega}$.

The case: i is of the form $\tilde{\mathrm{i}}$

Via Ω, the $\check{U_{q}^{\leq 0}} \otimes \check{U_{q}} \geq 0$-module $U_{q}^{-} / U_{q}^{-}(w)^{\perp} \otimes U_{q}^{+} / U_{q}^{+}(w)^{\perp}$ can be regarded as an $A_{q}[\mathfrak{g}]$-module.

Theorem (O-)

Let $w \in I(w)$. Define $\tilde{V}_{w}:=\left(V_{w^{-1}} \otimes V_{w}\right)^{\mathrm{tw}}(\leftarrow$ slightly twisted $)$.
Then \tilde{V}_{w} is isomorphic to $U_{q}^{-} / U_{q}^{-}(w)^{\perp} \otimes U_{q}^{+} / U_{q}^{+}(w)^{\perp}$ as an
$A_{q}[\mathfrak{g}]$-module. This isomorphism is given by

$$
|(0)\rangle_{w^{-1}} \otimes|(0)\rangle_{w} \mapsto[1]_{w^{-1}} \otimes[1]_{w}
$$

Set $\mathcal{S}:=\left\{c_{f_{\lambda}, v_{\lambda}}^{\lambda}\right\}_{\lambda \in P_{+}}\left(f_{\lambda}, v_{\lambda}\right.$ are highest weight vectors of $V(\lambda)_{\mathrm{gr}}^{*}, V(\lambda)$ respectively with $\left\langle f_{\lambda}, v_{\lambda}\right\rangle=1$).
Then the action of $A_{q}[\mathfrak{g}]$ on \tilde{V}_{w} is extended to $A_{q}[\mathfrak{g}]\left[\mathcal{S}^{-1}\right]$.
In particular, the $A_{q}[\mathfrak{g}]$-module \tilde{V}_{w} is indecomposable, generated by $|(0)\rangle_{w^{-1}} \otimes|(0)\rangle_{w}$, and decomposed into finite dimensional weight spaces with respect to the action of \mathcal{S}. Moreover any nonzero vector generates an infinite dimensional submodule (if $w \neq e$).

Remark

The isomorphism $\tilde{\Psi}_{\mathrm{KOY}}^{w}: \tilde{V}_{w} \rightarrow U_{q}^{-} / U_{q}^{-}(w)^{\perp} \otimes U_{q}^{+} / U_{q}^{+}(w)^{\perp}$ in the theorem is NOT equal to $\left|\mathbf{c}_{\text {rev }}\right\rangle_{\mathbf{i}_{\text {rev }}} \otimes\left|\mathbf{c}^{\prime}\right\rangle_{\mathbf{i}} \mapsto\left[F_{\mathbf{i}}^{\mathbf{c}}\right]_{w} \otimes\left[E_{\mathbf{i}}^{\mathbf{c}}\right]_{w}$. Indeed

$$
\tilde{\Psi}_{\mathrm{KOY}}^{w}\left(\left|\mathbf{c}_{\mathrm{rev}}\right\rangle_{\mathbf{i}_{\text {rev }}} \otimes\left|\mathbf{c}^{\prime}\right\rangle_{\mathbf{i}^{\prime}}\right)=\left[F_{\mathbf{i}}^{\mathbf{c}}\right]_{w} \otimes\left[E_{\substack{\mathbf{i}^{\prime} \\ \mathbf{c}^{\prime} \\ Y \in U^{-}, X \in U^{+} \\ \text {wt } Y>\text { ht } F_{\mathbf{i}}^{\mathbf{c}}, \text { wt } X<\text { wt } E_{\mathbf{i}^{\prime}}^{\mathbf{c}^{\prime}}}}[Y]_{w} \otimes[X]_{w} .\right.
$$

We can compute this difference in the case when \mathfrak{g} is of finite type and w is the longest element w_{0}.

Example

Let $\mathfrak{g}=\mathfrak{s l}_{2}$. Then

$$
\tilde{\Psi}_{\mathrm{KOY}}(|2\rangle \otimes|1\rangle)=F^{(2)} \otimes E+\frac{1}{q-q^{3}} F \otimes 1
$$

Relation to the Drinfeld double

From now on we assume that \mathfrak{g} is of finite type.
Let U_{q}^{\prime} be a variant of the quantized enveloping algebra whose Cartan part is the group algebra of the root lattice $(\subset P)$.
Then we can consider the Drinfeld double $A_{q}[\mathfrak{g}] \bowtie U_{q}^{\prime}$ of $A_{q}[\mathfrak{g}]$ and U_{q}^{\prime}. (The $\mathbb{Q}(q)$-algebra $A_{q}[\mathfrak{g}] \bowtie U_{q}^{\prime}$ contains $A_{q}[\mathfrak{g}]$ and U_{q}^{\prime} as subalgebras.)
Then it is known that \exists an embedding $A_{q}[\mathfrak{g}] \bowtie U_{q}^{\prime} \rightarrow \check{U}_{q} \otimes \check{U}_{q}$ of algebras, whose restriction to $A_{q}[\mathfrak{g}]$ coincides with Ω. \rightsquigarrow If the action of $\check{U}_{q}^{\leq 0} \otimes \check{U}_{q}^{\geq 0}$ on $U_{q}^{-} / U_{q}^{-}(w)^{\perp} \otimes U_{q}^{+} / U_{q}^{+}(w)^{\perp}$ extends to the $\check{U}_{q} \otimes \check{U}_{q}$-module structure, the $A_{q}[\mathfrak{g}]$-module structure on \tilde{V}_{w} extends to the $A_{q}[\mathfrak{g}] \bowtie U_{q}^{\prime}$-module structure!

Relation to the Drinfeld double

Theorem (O-)

Let J be a subset of I and W_{J} the subgroup of W generated by $\left\{s_{j}\right\}_{j \in J}$. Write the longest element of W (resp. W_{J}) as w_{0} (resp. $w_{J, 0}$). Then the $A_{q}[\mathfrak{g}]$-module structure on $\tilde{V}_{w_{0} w_{J, 0}}$ can be extended to the $A_{q}[\mathfrak{g}] \bowtie U_{q}^{\prime}$-module structure.

In other words, when $w=w_{0} w_{J, 0}$, the $A_{q}[\mathfrak{g}]$-module $\tilde{V}_{w_{0} w_{J, 0}}$ admits a "compatible U_{q}^{\prime}-action".
\rightsquigarrow Can we "understand" the modules of this type conceptually...? (using quantum flag manifolds...?)

