On some reducible representations of the quantized coordinate algebras

Hironori Oya

The University of Tokyo

21st Conference on Algebra for Young Researchers in Japan Nara Women's University, 29/3/2016

Subjects

<u>Main objects</u>: Representations of quantized coordinate algebras for finite dimensional simple Lie algebras over \mathbb{C} .

For any sequence i of the indices of simple roots, we can construct a module V_i over the quantized coordinate algebra.

Theorem (Soibelman ('90))

The module V_i is irreducible if and only if i is a reduced word of an element of the Weyl group.

(Naive) problem: Describe the structure of V_i in the case that i does not correspond to a reduced word.

Key: Kuniba-Okado-Yamada's result ('13); There exists a "natural" (but somewhat mysterious) isomorphism between

- ${\ensuremath{\,\circ}}$ the module $V_{{\ensuremath{\mathbf{i}}}_0}$ corresponding to the longest element $w_0,$ and
- (the positive half of) the quantized enveloping algebra U^+ .

Through this result, we can say that

"the structure of $V_{\mathbf{i}_0}$ is described by the algebra structure of U^+ ".

 \rightarrow How about the other i's? <u>Our target</u>: The modules $V_{\tilde{\mathbf{i}}}$ for $\tilde{\mathbf{i}} = (i_l, \ldots, i_1, i_1, \ldots, i_l)$ with $\overline{(i_1, \ldots, i_l)}$ is a reduced word of an element of the Weyl group. (In particular, they include the case $V_{(i,i)}$.)

Quantized enveloping algebras

Basic notation: Let

- g a symmetrizable Kac-Moody Lie algebra(⊃ finite dimensional simple Lie algebra) over C,
- P the weight lattice of \mathfrak{g} and $\{\alpha_i^{(\vee)}\}_{i\in I}$ the simple (co)roots of \mathfrak{g} ,
- U_q(:= U_q(𝔅)) the quantized enveloping algebra over Q(q); Chevalley generator: E_i, F_i (i ∈ I), K_h (h ∈ P*), Some relations: K_hE_i = q^{⟨α_i,h⟩}E_iK_h, q-Serre relations, . . . (This is a q-analogue of U(𝔅)),
 U_q^{+(resp. -)} the subalgebra of U_q generated by E_i's (resp. F_i's).

 $\underbrace{\text{Hopf algebra structure of } U_q}_{\text{I}} \left(K_i := K_{\frac{(\alpha_i, \alpha_i)}{2} \alpha_i^{\vee}} \right)$

 $\Delta(E_i) = E_i \otimes K_i^{-1} + 1 \otimes E_i, \ \Delta(F_i) = F_i \otimes 1 + K_i \otimes F_i, \ \Delta(K_h) = K_h \otimes K_h,$

$$\varepsilon(E_i) = \varepsilon(F_i) = 0, \varepsilon(K_h) = 1, \exists antipode.$$

Quantized coordinate algebras

Definition

The quantized coordinate algebra $A_q[\mathfrak{g}]$ is a subalgebra of U_q^* generated (in fact, spanned) by the matrix coefficients

$$c_{f,v}^{\lambda}(:=c_{f,v}^{V(\lambda)}):=(X\mapsto \langle f, X.v\rangle),$$

here

- $\bullet \ \lambda \in P_+ := \{ \mu \in P \mid \langle \mu, \alpha_i^\vee \rangle \geq 0 \text{ for all } i \in I \},$
- $V(\lambda)$ the integrable highest weight U_q -module with highest weight λ ,
- $v \in V(\lambda)$, $f \in V(\lambda)^*_{\mathrm{gr}}$ (the graded dual of $V(\lambda)$).

In $A_q[\mathfrak{g}]$, we have

$$c_{f,v}^{\lambda}c_{f',v'}^{\lambda'} = c_{f\otimes f',v\otimes v'}^{V(\lambda)\otimes V(\lambda')}$$

An important example

The quantized coordinate algebra $A_q[\mathfrak{sl}_2]$ of \mathfrak{sl}_2 is isomorphic to the $\mathbb{Q}(q)$ -algebra generated by c_{ij} $(i, j \in \{1, 2\})$ with the following relations; (If "q = 1", then the first six relations are the same.)

$$c_{i1}c_{i2} = qc_{i2}c_{i1} \ (i = 1, 2), \quad c_{1j}c_{2j} = qc_{2j}c_{1j} \ (j = 1, 2), \\ [c_{12}, c_{21}] = 0, \qquad [c_{11}, c_{22}] = (q - q^{-1})c_{12}c_{21}, \\ c_{11}c_{22} - qc_{12}c_{21} = 1.$$

Indeed the isomorphism of algebras is given by

$$c_{ij} \mapsto c_{f_i, v_j}^{V(\varpi)},$$

where $V(\varpi)$ is an irreducible 2-dimensional representation of $U_q(\mathfrak{sl}_2)$ with a highest weight vector v_1 and $v_2 = F.v_1$, and $\{f_1, f_2\}$ is its dual basis.

The module V_{\bigstar} of $A_q[\mathfrak{sl}_2]$

We have an $A_q[\mathfrak{sl}_2]$ -module $V_\bigstar := \bigoplus_{m \in \mathbb{Z}_{>0}} \mathbb{Q}(q) \ket{m}$ given by

$$c_{11.}: |m\rangle \longmapsto \begin{cases} 0 & \text{if } m = 0, \\ |m-1\rangle & \text{if } m \in \mathbb{Z}_{>0}, \end{cases}$$

$$c_{12.}: |m\rangle \longmapsto -q^{m+1} |m\rangle & \text{for } m \in \mathbb{Z}_{\geq 0}, \\ c_{21.}: |m\rangle \longmapsto q^m |m\rangle & \text{for } m \in \mathbb{Z}_{\geq 0}, \end{cases}$$

$$c_{22.}: |m\rangle \longmapsto (1 - q^{2(m+1)}) |m+1\rangle & \text{for } m \in \mathbb{Z}_{\geq 0}.$$

By its construction, it is easy to see that this is an irreducible $A_q[\mathfrak{sl}_2]$ -module.

The module $V_{\mathbf{i}}$ of $A_q[\mathfrak{g}]$

For $i \in I$, we denote by $U_{q_i,i}$ the Hopf subalgebra of U_q generated by $\{E_i, F_i, K_i^{\pm 1}\}$.

The Hopf algebra $U_{q_i,i}$ is isomorphic to $U_{q_i}(\mathfrak{sl}_2)$ $(q_i := q^{\frac{(\alpha_i,\alpha_i)}{2}})$. \rightsquigarrow We can regard $\mathbb{Q}(q) \otimes_{\mathbb{Q}(q_i)} A_{q_i}[\mathfrak{sl}_2]$ as a subalgebra of $U_{q_i,i}^*$ and denote this subalgebra by A_i .

The irreducible module V_{\bigstar} corresponding to A_i will be denoted by $V_i := \bigoplus_{m \in \mathbb{Z}_{>0}} \mathbb{Q}(q) |m\rangle_i$.

For $\mathbf{i} = (i_1, \dots, i_l) \in I^l$, set $m_{\mathbf{i}} : U_{q_{i_1}, i_1} \otimes \dots \otimes U_{q_{i_l}, i_l} \xrightarrow{\text{multiplication}} U_q$. $\rightsquigarrow \exists$ the algebra homomorphism $m_{\mathbf{i}}^* : A_q[\mathfrak{g}] \to A_{i_1} \otimes \dots \otimes A_{i_l}$. Via $m_{\mathbf{i}}^*$, the $\mathbb{Q}(q)$ -vector space $V_{\mathbf{i}} := V_{i_1} \otimes \dots \otimes V_{i_l}$ is regarded as an $A_q[\mathfrak{g}]$ -module. Let W be the Weyl group of \mathfrak{g} .

For $w \in W$, denote by I(w) the set of the reduced words of w.

(ex. $\mathfrak{g} = \mathfrak{sl}_3$, w_0 the longest element, $I(w_0) = \{(1, 2, 1), (2, 1, 2)\}.$)

Theorem (Soibelman, Narayanan, Tanisaki, (O-))

The $A_q[\mathfrak{g}]$ -module $V_{\mathbf{i}}$ is irreducible if and only if $\mathbf{i} \in I(w)$ for some $w \in W$.

Moreover, for $i_1, i_2 \in I(w)$, there is an isomorphism of $A_q[\mathfrak{g}]$ -modules $V_{i_1} \to V_{i_2}$ given by

$$|(0)\rangle_{\mathbf{i}_1} \mapsto |(0)\rangle_{\mathbf{i}_2}.$$

Hence we denote the module V_i $(i \in I(w))$ by V_w . (i. e. The modules $\{V_i\}_{i \in I(w)}$ are identified via the above isomorphism.)

KOY's isomorphism: preliminaries

Definition (The quantum nilpotent subalgebras $U_q(w)^{\pm}$)

For $w \in W$ and $\mathbf{i} = (i_1, \dots, i_l) \in I(w)$, set

$$\begin{split} E^{\mathbf{c}}_{\mathbf{i}} &:= E^{(c_l)}_{i_l} T'_{i_l,1}(E^{(c_{l-1})}_{i_{l-1}}) \cdots T'_{i_l,1} \cdots T'_{i_2,1}(E^{(c_1)}_{i_1}), \text{ and } \\ F^{\mathbf{c}}_{\mathbf{i}} &:= F^{(c_l)}_{i_l} T''_{i_l,1}(F^{(c_{l-1})}_{i_{l-1}}) \cdots T''_{i_l,1} \cdots T''_{i_2,1}(F^{(c_1)}_{i_1}), \end{split}$$

where $\mathbf{c} = (c_1, \ldots, c_l) \in \mathbb{Z}_{\geq 0}^l$, $X_i^{(c)}$ denotes the divided power and $T'_{i_l,1}, T''_{i_l,1}$ are q-analogues of the actions of the braid group. The set $\{E_{\mathbf{i}}^{\mathbf{c}}(\text{resp. } F_{\mathbf{i}}^{\mathbf{c}})\}_{\mathbf{c}}$ is a linearly independent set of $U_q^{+(\text{resp. } -)}$. Let us denote by $U_q^{+(\text{resp. } -)}(w)$ the $\mathbb{Q}(q)$ -vector subspace of $U_q^{+(\text{resp. } -)}$ spanned by $\{E_{\mathbf{i}}^{\mathbf{c}}(\text{resp. } F_{\mathbf{i}}^{\mathbf{c}})\}_{\mathbf{c}}$. Here $U_q^{\pm}(e) = \mathbb{Q}(q)(\subset U_q^{\pm})$. In fact these subspaces do not depend on the choice of $\mathbf{i} \in I(w)$.

ex.
$$\mathfrak{g} = \mathfrak{sl}_3$$
, $X_{(1,2,1)}^{(1,1,2)} = X_1^{(2)}(X_2X_1 - qX_1X_2)X_2$ ($X = E, F$).

KOY's isomorphism

Let $U_q^{\pm}(w)^{\perp}$ be the orthogonal complements of $U_q^{\pm}(w)$ with respect to the Lusztig type bilinear forms on U_q^{\pm} . Then they are left ideals of U_q^{\pm} .

Denote the quotient maps $U_q^{\pm} \to U_q^{\pm}/U_q^{\pm}(w)^{\perp}$ by $X \mapsto [X]_w$. Note that $\{[E_{\mathbf{i}}^{\mathbf{c}}]_w (\text{resp. } [F_{\mathbf{i}}^{\mathbf{c}}]_w)\}_{\mathbf{c}}$ is a basis of $U_q^{\pm}/U_q^{\pm}(w)^{\perp}$ respectively.

Theorem (Kuniba-Okado-Yamada, Saito, Tanisaki, (O-))

Let $\mathbf{i} \in I(w)$. Define the $\mathbb{Q}(q)$ -linear isomorphism $\Phi_{\mathrm{KOY}}^{+,w}: V_w \to U_q^+/U_q^+(w)^{\perp}$ by $|\mathbf{c}\rangle_{\mathbf{i}} \mapsto [E_{\mathbf{i}}^{\mathbf{c}}]_w$, where $|\mathbf{c}\rangle_{\mathbf{i}} := |c_1\rangle_{i_1} \otimes \cdots \otimes |c_l\rangle_{i_l}$. Then $\Phi_{\mathrm{KOY}}^{+,w}$ is well-defined. (*i.* e. does not depend on the choice of $\mathbf{i} \in I(w)$.) Moreover, when we identify V_w with $U_q^+/U_q^+(w)^{\perp}$ via $\Phi_{\mathrm{KOY}}^{+,w}$, the multiplication operator E_i is explicitly written in terms of the matrix coefficients.

Technical modification:

$$\begin{split} \check{U}_q^0 &:= \text{the group algebra of } P \text{ over } \mathbb{Q}(q) \; (=: \bigoplus_{\lambda \in P} \mathbb{Q}(q) K_{\lambda}). \\ \text{Set } \check{U}_q^{\gtrless 0} &:= U_q^{\pm} \check{U}_q^0. \text{ (i. e. } K_{\lambda} E_i = q^{(\alpha_i,\lambda)} E_i K_{\lambda} \text{ etc.}) \\ \text{Note that } U_q^{\pm} / U_q^{\pm}(w)^{\perp} \text{ can be regarded as } \check{U}_q^{\gtrless 0} \text{-modules by } \\ K_{\lambda}.[1]_w &= [1]_w \text{ for all } \lambda \in P. \end{split}$$

Key Tool

There exists an embedding $\Omega: A_q[\mathfrak{g}] \to \check{U}_q^{\leq 0} \otimes \check{U}_q^{\geq 0}$ of $\mathbb{Q}(q)$ -algebras using the Drinfeld pairing (cf. Joseph's textbook).

An example

Let $\mathfrak{g} = \mathfrak{sl}_2$. The weight lattice of \mathfrak{sl}_2 is written as $P = \mathbb{Z}\varpi$ (ϖ is the fundamental weight). Then

$$\Omega(c_{11}) = K_{-\varpi} \otimes K_{\varpi},$$

$$\Omega(c_{12}) = (1 - q^2) K_{-\varpi} \otimes EK_{\varpi},$$

$$\Omega(c_{21}) = (1 - q^2) FK_{-\varpi} \otimes K_{\varpi},$$

$$\Omega(c_{22}) = (1 - q^2)^2 FK_{-\varpi} \otimes EK_{\varpi} + K_{\varpi} \otimes K_{-\varpi}.$$

(Note that $K_{\varpi}E = qEK_{\varpi}, K_{\varpi}F = q^{-1}FK_{\varpi}$) $\rightsquigarrow \mathcal{S} := \{c_{11}^n\}_{n\geq 0}$ is an Ore set in $A_q[\mathfrak{sl}_2]$ and $A_q[\mathfrak{sl}_2][\mathcal{S}^{-1}]$ is isomorphic to $\bigoplus_{n\in\mathbb{Z}}U_q^-K_{-n\varpi}\otimes U_q^+K_{n\varpi}$.

The case: i is of the form \tilde{i}

Via Ω , the $\check{U}_q^{\leq 0} \otimes \check{U}_q^{\geq 0}$ -module $U_q^-/U_q^-(w)^\perp \otimes U_q^+/U_q^+(w)^\perp$ can be regarded as an $A_q[\mathfrak{g}]$ -module.

Theorem (O-)

Let $w \in I(w)$. Define $\tilde{V}_w := (V_{w^{-1}} \otimes V_w)^{\text{tw}}$ (\leftarrow slightly twisted). Then \tilde{V}_w is isomorphic to $U_q^-/U_q^-(w)^{\perp} \otimes U_q^+/U_q^+(w)^{\perp}$ as an $A_q[\mathfrak{g}]$ -module. This isomorphism is given by $|(0)\rangle_{w^{-1}} \otimes |(0)\rangle_w \mapsto [1]_{w^{-1}} \otimes [1]_w.$ Set $S := \{c_{f_{\lambda},v_{\lambda}}^{\lambda}\}_{\lambda \in P_+}$ (f_{λ}, v_{λ} are highest weight vectors of $V(\lambda)_{\text{gr}}^*, V(\lambda)$ respectively with $\langle f_{\lambda}, v_{\lambda} \rangle = 1$). Then the action of $A_q[\mathfrak{g}]$ on \tilde{V}_w is extended to $A_q[\mathfrak{g}][S^{-1}]$.

In particular, the $A_q[\mathfrak{g}]$ -module V_w is indecomposable, generated by $|(0)\rangle_{w^{-1}} \otimes |(0)\rangle_w$, and decomposed into finite dimensional weight spaces with respect to the action of S. Moreover any nonzero vector generates an infinite dimensional submodule (if $w \neq e$).

Hironori Oya (The University of Tokyo)

Reducible representations of QCAs

14 / 17

Remark

The isomorphism $\tilde{\Psi}^w_{\text{KOY}} : \tilde{V}_w \to U_q^- / U_q^-(w)^\perp \otimes U_q^+ / U_q^+(w)^\perp$ in the theorem is NOT equal to $|\mathbf{c}_{\text{rev}}\rangle_{\mathbf{i}_{\text{rev}}} \otimes |\mathbf{c}'\rangle_{\mathbf{i}} \mapsto [F_{\mathbf{i}}^{\mathbf{c}}]_w \otimes [E_{\mathbf{i}}^{\mathbf{c}}]_w$. Indeed

$$\tilde{\Psi}_{\mathrm{KOY}}^w(|\mathbf{c}_{\mathrm{rev}}\rangle_{\mathbf{i}_{\mathrm{rev}}} \otimes |\mathbf{c}'\rangle_{\mathbf{i}'}) = [F_{\mathbf{i}}^{\mathbf{c}}]_w \otimes [E_{\mathbf{i}'}^{\mathbf{c}'}]_w + \sum_{\substack{Y \in U^-, X \in U^+ \text{ homogeneous}\\ \text{wt } Y > \text{wt } F_{\mathbf{i}}^{\mathbf{c}}, \text{wt } X < \text{wt } E_{\mathbf{i}'}^{\mathbf{c}'}}} [Y]_w \otimes [X]_w.$$

We can compute this difference in the case when \mathfrak{g} is of finite type and w is the longest element w_0 .

Example
Let
$$\mathfrak{g} = \mathfrak{sl}_2$$
. Then
 $\tilde{\Psi}_{\mathrm{KOY}}(|2\rangle \otimes |1\rangle) = F^{(2)} \otimes E + \frac{1}{q-q^3}F \otimes 1.$

From now on we assume that \mathfrak{g} is of finite type.

Let U'_q be a variant of the quantized enveloping algebra whose Cartan part is the group algebra of the root lattice ($\subset P$).

Then we can consider the Drinfeld double $A_q[\mathfrak{g}] \bowtie U'_q$ of $A_q[\mathfrak{g}]$ and U'_q . (The $\mathbb{Q}(q)$ -algebra $A_q[\mathfrak{g}] \bowtie U'_q$ contains $A_q[\mathfrak{g}]$ and U'_q as subalgebras.)

Then it is known that \exists an embedding $A_q[\mathfrak{g}] \bowtie U'_q \to \check{U}_q \otimes \check{U}_q$ of algebras, whose restriction to $A_q[\mathfrak{g}]$ coincides with Ω . \rightsquigarrow If the action of $\check{U}_q^{\leq 0} \otimes \check{U}_q^{\geq 0}$ on $U_q^-/U_q^-(w)^{\perp} \otimes U_q^+/U_q^+(w)^{\perp}$ extends to the $\check{U}_q \otimes \check{U}_q$ -module structure, the $A_q[\mathfrak{g}]$ -module structure on \tilde{V}_w extends to the $A_q[\mathfrak{g}] \bowtie U'_q$ -module structure!

Theorem (O-)

Let J be a subset of I and W_J the subgroup of W generated by $\{s_j\}_{j\in J}$. Write the longest element of W (resp. W_J) as w_0 (resp. $w_{J,0}$). Then the $A_q[\mathfrak{g}]$ -module structure on $\tilde{V}_{w_0w_{J,0}}$ can be extended to the $A_q[\mathfrak{g}] \bowtie U'_q$ -module structure.

In other words, when $w = w_0 w_{J,0}$, the $A_q[\mathfrak{g}]$ -module $\tilde{V}_{w_0 w_{J,0}}$ admits a "compatible U'_q -action".

 \rightsquigarrow Can we "understand" the modules of this type conceptually...? (using quantum flag manifolds...?)