Representations of quantized function algebras and the transition matrices from Canonical bases to PBW bases

Hironori Oya

The University of Tokyo

Algebraic Lie Theory and Representation Theory 2015 Okayama, 7/6/2015

Quantized enveloping algebras

- \mathfrak{g} a finite dimensional complex simple Lie algebra
- $U_{q}(\mathfrak{g})=\left\langle E_{i}, F_{i}, K_{i}^{ \pm 1}(i \in I)\right|$ "usual" relations $\rangle_{\mathbb{Q}(q) \text {-algebra }}$ (ex. $K_{i} E_{j}=q^{\left(\alpha_{i}, \alpha_{j}\right)} K_{i} E_{j}, q$-Serre relations, \ldots) the quantized enveloping algebra $/ \mathbb{Q}(q)$ (a q-analogue of $U(\mathfrak{g})$)
- $U_{q}\left(\mathfrak{n}^{-}\right)=\left\langle F_{i} \mid i \in I\right\rangle_{\mathbb{Q}(q) \text {-algebra }} \subset U_{q}(\mathfrak{g})$

The quantized enveloping algebra $U_{q}(\mathfrak{g})$ has a Hopf algebra structure. In particular, its coalgebra structure is defined as follows:

$$
\begin{gathered}
\Delta\left(E_{i}\right)=E_{i} \otimes 1+K_{i} \otimes E_{i}, \Delta\left(F_{i}\right)=F_{i} \otimes K_{i}^{-1}+1 \otimes F_{i}, \Delta\left(K_{i}\right)=K_{i} \otimes K_{i} \\
\varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0, \varepsilon\left(K_{i}^{ \pm 1}\right)=1
\end{gathered}
$$

Set $X_{i}^{(n)}:=\frac{X_{i}^{n}}{[n]_{i}!}$ where $[n]_{i}!:=\prod_{s=1}^{n} \frac{q_{i}^{s}-q_{i}^{-s}}{q_{i}-q_{i}^{-1}}$ and $q_{i}:=q^{\left(\alpha_{i}, \alpha_{i}\right) / 2}$. $(X=E, F)$

PBW bases

Let $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ be a reduced word of the longest element w_{0} of the Weyl group W. (i.e. $w_{0}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{N}} N:=$ the length of w_{0}.)

Definition (The PBW bases)

The vectors

$$
F_{\mathbf{i}}^{\mathbf{c}}:=F_{i_{1}}^{\left(c_{1}\right)} T_{i_{1}, 1}^{\prime \prime}\left(F_{i_{2}}^{\left(c_{2}\right)}\right) \cdots T_{i_{1}, 1}^{\prime \prime} T_{i_{2}, 1}^{\prime \prime} \cdots T_{i_{N-1}, 1}^{\prime \prime}\left(F_{i_{N}}^{\left(c_{N}\right)}\right)
$$

$\left(\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{N}\right) \in\left(\mathbb{Z}_{\geqq 0}\right)^{N}\right)$ forms a basis of $U_{q}\left(\mathfrak{n}^{-}\right)$. Here, $T_{i, 1}^{\prime \prime}$
is a q-analogue of the action of the braid group. (We follow the notation of Lusztig's textbook.)

Note that this is an explicit basis of $U_{q}\left(\mathfrak{n}^{-}\right)$.
$\left(\mathrm{ex}. \mathfrak{g}=\mathfrak{s l}_{3}, \mathbf{i}=(1,2,1), F_{\mathbf{i}}^{(1,1,2)}=F_{1}\left(F_{2} F_{1}-q F_{1} F_{2}\right) F_{2}^{(2)}\right.$.)

Canonical bases

Let \mathbf{i} be a reduced word of w_{0}. Then, there uniquely exists a basis $\left\{G^{\mathbf{c}}\right\}_{\mathbf{c}}$ of $U_{q}\left(\mathfrak{n}^{-}\right)$such that

- $\overline{G^{\mathbf{c}}}=G^{\mathbf{c}}$, where $\overline{(\cdot)} \circlearrowright U_{q}\left(\mathfrak{n}^{-}\right)$given by $F_{i} \mapsto F_{i}, q \mapsto q^{-1}$
- $G^{\mathbf{c}}=F_{\mathrm{i}}^{\mathbf{c}}+\sum_{\mathbf{d}>\mathbf{c}}{ }_{\mathrm{i}} \zeta_{\mathbf{d}}^{\mathbf{c}} F_{\mathrm{i}}^{\mathbf{d}}$ with ${ }_{\mathrm{i}} \zeta_{\mathbf{d}}^{\mathbf{c}} \in q \mathbb{Z}[q]$.

We consider the lexicographic order on $\left(\mathbb{Z}_{\geqq 0}\right)^{N}$.
(ex. \mathfrak{g}, \mathbf{i} as above, $G^{(0,1,0)}=F_{2} F_{1}=\left(F_{2} F_{1}-q F_{1} F_{2}\right)+q F_{1} F_{2}$.)

Definition (The canonical basis)

We call $\left\{G^{\mathbf{c}}\right\}_{\mathbf{c}}$ the canonical basis of $U_{q}\left(\mathfrak{n}^{-}\right)$.

Remark

In fact, the canonical basis does not depend on the choice of i. (The data \mathbf{c} depend on i.)
In general, this is a not explicit basis despite having "nice" properties.
We investigate ${ }_{i} \zeta_{d}^{c}$'s via the representation theory of the quantized

Quantized function algebras

The dual space $U_{q}(\mathfrak{g})^{*}$ of $U_{q}(\mathfrak{g})$ has a $\mathbb{Q}(q)$-algebra structure induced from the coalgebra structure of $U_{q}(\mathfrak{g})$.

Definition (The quantized function algebra)

The quantized function algebra $\mathbb{Q}_{q}[G]$ is a subalgebra of $U_{q}(\mathfrak{g})^{*}$ generated (in fact, spanned) by the matrix coefficients

$$
c_{f, v}^{\lambda}:=(u \mapsto\langle f, u . v\rangle)
$$

here,

- $\lambda \in P_{+}$($=$the set of dominant integral weight),
- $V(\lambda)$ the integrable highest weight $U_{q}(\mathfrak{g})$-module with highest weight λ,
- $f \in V(\lambda)^{*}, v \in V(\lambda)$.

Hopf algebra structure of QFAs

The algebra $\mathbb{Q}_{q}[G]$ has a Hopf algebra structure induced from the one of $U_{q}(\mathfrak{g})$ and a left and right $U_{q}(\mathfrak{g})$-algebra structure. For example,

- $c_{f, v}^{\lambda} c_{f^{\prime}, v^{\prime}}^{\lambda^{\prime}}=c_{f \otimes f^{\prime}, v \otimes v^{\prime}}^{V(\lambda)}$
- $\Delta\left(c_{f, v}^{\lambda}\right)=\sum_{j} c_{f, v_{j}}^{\lambda} \otimes c_{f_{j}, v}^{\lambda}$
$\left\{v_{j}\right\}_{j}$ a basis of $V(\lambda),\left\{f_{j}\right\}_{j}$ the dual basis of $V(\lambda)^{*}$.

Representations of QFAs

The QFA $\mathbb{Q}_{q}[G]$ is a quantum analogue of the algebra of regular functions on G. (G the connected simply connected simple complex algebraic group whose Lie algebra is \mathfrak{g}.)
However, the algebra $\mathbb{Q}_{q}[G]$ has infinite dimensional irreducible modules:

$$
\mathbb{Q}_{q}[G] \rightarrow \mathbb{Q}_{q_{i}}\left[S L_{2}\right] \curvearrowright V_{i}:=\bigoplus_{m \in \mathbb{Z}_{\geqq 0}} \mathbb{Q}(q)|m\rangle_{i} .
$$

(dual to $U_{q_{i}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow U_{q}(\mathfrak{g})$.)

Representations of QFAs

Theorem (Soibelman ('90))

Let $w \in W$. Then, for any reduced expression $w=s_{i_{1}} \cdots s_{i_{l}}$, the $\mathbb{Q}_{q}[G]$-module $V_{i_{1}} \otimes \cdots \otimes V_{i_{l}}$ is irreducible and its isomorphism class does not depend on the choice of the reduced expressions.Moreover, if $\mathbf{i}=\left(i_{1}, \ldots, i_{l}\right)$ and $\mathbf{j}=\left(j_{1}, \ldots, j_{l}\right)$ are reduced words of w, then there is a $\mathbb{Q}_{q}[G]$-module isomorphism
$\Theta_{\mathbf{j}, \mathbf{i}}: V_{i_{1}} \otimes \cdots \otimes V_{i_{l}} \rightarrow V_{j_{1}} \otimes \cdots \otimes V_{j_{l}}$ given by

$$
|(0)\rangle_{\mathbf{i}} \mapsto|(0)\rangle_{\mathbf{j}}
$$

where $|\mathbf{c}\rangle_{\mathbf{k}}:=\left|c_{1}\right\rangle_{k_{1}} \otimes \cdots \otimes\left|c_{l}\right\rangle_{k_{l}}(\mathbf{k}=\mathbf{i}, \mathbf{j})$.
Hence, we denote this module by V_{w}. (i.e. $V_{i_{1}} \otimes \cdots \otimes V_{i_{l}}$ and $V_{j_{1}} \otimes \cdots \otimes V_{j_{l}}$ are identified via $\Theta_{\mathbf{j}, \mathbf{i}}$.)

KOY's result

Theorem (Kuniba-Okado-Yamada ('13))

Let \mathbf{i}, \mathbf{j} be reduced words of w_{0}.
Define the $\mathbb{Q}(q)$-linear isomorphism $\Phi_{\mathbf{k}}: U_{q}\left(\mathfrak{n}^{-}\right) \rightarrow V_{w_{0}}$ by $F_{\mathbf{k}}^{\mathbf{c}} \mapsto|\mathbf{c}\rangle_{\mathbf{k}} .(\mathbf{k}=\mathbf{i}, \mathbf{j})$
Then, we have

$$
\Phi_{\mathbf{j}}=\Theta_{\mathrm{j}, \mathrm{i}} \circ \Phi_{\mathbf{i}} .
$$

This theorem says that the map Φ_{i} does not depend on the choice of i. (denoted by $\Phi_{\text {Koy. }}$)

Strategy

Our approach to the coefficients ${ }_{i} \zeta_{\mathrm{d}}^{\mathrm{c}}$: (Recall that $G^{\mathbf{c}}=F_{\mathbf{i}}^{\mathbf{c}}+\sum_{\mathbf{d}>\mathbf{c}} \zeta_{\mathbf{d}}^{\mathbf{c}} F_{\mathbf{i}}^{\mathbf{d}}$.)
(I) Find an element $c \in \mathbb{Q}_{q}[G]$ such that $\Phi_{\text {KOY }}^{-1}\left(c .|(0)\rangle_{\mathbf{i}}\right) \in U_{q}\left(\mathfrak{n}^{-}\right)$ "corresponds" to $G^{\mathbf{c}}$.
(II) Compute $c .|(0)\rangle_{\mathbf{i}}\left(=\Delta^{(N)}(c) .|0\rangle_{i_{1}} \otimes \cdots \otimes|0\rangle_{i_{N}}\right)$ directly.

In fact, (I) is easy by using "KOY's conjecture" proved by Saito ('14) and Tanisaki ('14).

Notation

Notation

Fix a highest weight vector $v_{\lambda} \in V(\lambda)$.
Consider the nondegenerate symmetric bilinear form

$$
(,): V(\lambda) \times V(\lambda) \rightarrow \mathbb{Q}(q) \text { given by }
$$

$$
\left(v_{\lambda}, v_{\lambda}\right)=1,\left(E_{i} \cdot u, v\right)=\left(u, F_{i} \cdot v\right),\left(K_{i} \cdot u, v\right)=\left(u, K_{i} \cdot v\right)
$$

For $v \in V(\lambda)$, define $v^{*} \in V(\lambda)^{*}$ by $u \mapsto(v, u)$.

Results 1

Fix $\mathbf{c} \in\left(\mathbb{Z}_{\geqq 0}\right)^{N}$ and a reduced word \mathbf{i} of w_{0}.
Take a sufficiently large positive integer L. In particular, ${ }_{\mathbf{i}} \zeta_{\mathbf{d}}^{\mathbf{c}} \in q^{L-1} \mathbb{Z}\left[q^{-1}\right]$ for all \mathbf{d}. (This is NOT a sufficient condition of L.) Set $\lambda:=2(N+1) L \rho$. Here, $\rho:=$ the Weyl vector.

Theorem (O-)

We have

$$
\Phi_{\mathrm{KOY}}^{-1}\left(c_{\left(G^{\mathbf{c}}, v_{\lambda}\right)^{*}, v_{w_{0} \lambda}}^{\lambda} \cdot|(0)\rangle_{\mathbf{i}}\right)=G^{\mathbf{c}}+q^{L} \sum_{\mathbf{d} \in\left(\mathbb{Z}_{\geqq 0}\right)^{N}} \eta_{\mathbf{d}} F_{\mathbf{i}}^{\mathbf{d}} \text { with } \eta_{\mathbf{d}} \in \mathbb{Z}[q] .
$$

Here, $v_{w_{0} \lambda}$ is the lowest weight canonical basis element of $V(\lambda)$.
Remark that $(\mathrm{RHS})=\sum_{\mathbf{d}}\left(\mathrm{i} \zeta_{\mathbf{d}}^{\mathbf{c}}+q^{L} \eta_{\mathbf{d}}\right) F_{\mathbf{i}}^{\mathbf{d}}$. Set $G^{\mathbf{c}} \cdot v_{\lambda}:=G_{\lambda}^{\mathrm{low}}\left(b_{0}\right)$.

Results 2

On the other hand, we have

$$
\begin{align*}
& c_{G_{\lambda}^{\mathrm{low}}\left(b_{0}\right)^{*}, v_{w_{0} \lambda}}^{\lambda} \cdot|(0)\rangle_{\mathbf{i}}= \\
& \sum_{b_{1}, \ldots, b_{N-1} \in B(\lambda)} c_{G_{\lambda}^{\mathrm{low}}\left(b_{0}\right)^{*}, G_{\lambda}^{\mathrm{up}}\left(b_{1}\right)}^{\lambda} \cdot|0\rangle_{i_{1}} \otimes c_{G_{\lambda}}^{\lambda}\left(b_{1}\right)^{*}, G_{\lambda}^{\mathrm{low}}\left(b_{2}\right) \cdot|0\rangle_{i_{2}} \\
& \otimes \cdots \otimes c_{G_{\lambda}}^{\lambda}\left(b_{N-1}\right)^{*}, v_{w_{0} \lambda} \cdot|0\rangle_{i_{N}} .
\end{align*}
$$

Here, $\left\{G_{\lambda}^{\text {low/up }}(b)\right\}_{b \in B(\lambda)}$ is the canonical/dual canonical basis of $V(\lambda)$.

Results 3

Lemma

In any non-zero summand of the right-hand side of $(\boldsymbol{\uparrow})$, for all k, $c_{G_{\lambda}^{\text {low }}\left(b_{k-1}\right)^{*}, G_{\lambda}^{\text {up }}\left(b_{k}\right)}^{\lambda} \cdot|0\rangle_{i_{k}}=p_{k}\left|d_{k}\right\rangle_{i_{k}}$ with $d_{k}:=-\frac{1}{2}\left\langle\mathrm{wt} b_{k-1}+\mathrm{wt} b_{k}, \alpha_{i_{k}}^{\vee}\right\rangle$ and $p_{k} \in q^{-L} \mathbb{Z}[q]$.

Hence, we may ignore the degree $\geqq N L$ part of the Laurent polynomial p_{k} for any k when calculating $\mathbf{i}_{\mathbf{d}}^{\mathbf{c}}$.

Results 4

(Recall that $c_{G_{\lambda}^{\text {low }}\left(b_{k-1}\right)^{*}, G_{\lambda}^{\text {up }}\left(b_{k}\right)}^{\lambda} \cdot|0\rangle_{i_{k}}=p_{k}\left|d_{k}\right\rangle_{i_{k}}$.)

Theorem (O-)

In any summand of the right-hand side of $(\boldsymbol{\uparrow})$ which contributes to ${ }_{i} \zeta_{\mathrm{d}}^{\mathrm{c}}$,
(i) $G_{\lambda}^{\text {low }}\left(b_{k}\right) \in U_{q}\left(\mathfrak{n}^{-}\right) \cdot v_{s_{i_{k}} \cdots s_{i_{1}} \lambda}(k=0, \ldots, N)$, and
(ii) the degree $<N L$ part of p_{k} is of the form $q_{i_{k}}^{\frac{1}{2} d_{k}\left(d_{k}-1\right)} d_{\mathbf{s}_{k}, \mathbf{t}}^{i_{k}, d_{k}}$ for some $\mathbf{t} \in\left(\mathbb{Z}_{\geqq 0}\right)^{N} .\left(k=1, \ldots, l\left(w_{0}\right)\right)$
Here, $G^{\mathbf{s}_{k}} \cdot v_{s_{i_{k-1}} \cdots s_{i_{1}} \lambda}=G_{\lambda}^{\text {low }}\left(b_{k-1}\right)$ and $\left(e_{i_{k}}^{\prime}\right)^{d_{k}}\left(G^{\mathbf{s}_{k}}\right)=\sum_{\mathbf{t}} d_{\mathbf{s}_{k}, \mathbf{t}}^{i_{k}, d_{k}} G^{\mathbf{t}}$. ($e_{i_{k}}^{\prime} \quad$ "the q-derivation")

Remark 1

In fact, this "calculation procedure" coincides with the one using the symmetric bilinear form (,) on $U_{q}\left(\mathfrak{n}^{-}\right)$such that

$$
(1,1)_{-}=1 \text { and }\left(F_{i} x, y\right)_{-}=\frac{1}{1-q_{i}^{2}}\left(x, e_{i}^{\prime}(y)\right)_{-} .
$$

Sketch We have

$$
{ }_{\mathbf{i}} \zeta_{\mathbf{d}}^{\mathbf{c}}=\left(G^{\mathbf{c}}, \tilde{F}_{\mathbf{i}}^{\mathbf{d}}\right)_{-},
$$

where $\tilde{F}_{\mathrm{i}}^{\mathrm{d}}$ is the dual PBW basis.
Calculate the right-hand side using the fact:
For $x, y \in \operatorname{Ker} e_{i}^{\prime}\left(\subset U_{q}\left(\mathfrak{n}^{-}\right)\right)$, we have

$$
(x, y)=\left(\left(T_{i, 1}^{\prime \prime}\right)^{-1}(x),\left(T_{i, 1}^{\prime \prime}\right)^{-1}(y)\right) .
$$

"Eliminate $T_{i, 1}^{\prime \prime \prime}$ " \leftrightarrow "Go to subsequent Demazure modules"

Remark 2

The following property of canonical bases is technically important:

Proposition (Similarity of the structure constants)

We set

$$
\begin{aligned}
& F_{i}^{(p)} G^{\mathrm{low}}(b)=\sum_{\tilde{b} \in B(\infty)} c_{-p i, b}^{\tilde{b}} G^{\mathrm{low}}(\tilde{b}) \\
& \left(e_{i}^{\prime}\right)^{p}\left(G^{\mathrm{low}}(b)\right)=\sum_{\tilde{b} \in B(\infty)} d_{b, \tilde{b}}^{i, p} G^{\mathrm{low}}(\tilde{b})
\end{aligned}
$$

Then, for any $b, \hat{b} \in B(\infty), i \in I$ and $p \in \mathbb{Z}_{\geq 0}$, we have

$$
\left(c_{-p i, b}^{\hat{b}}\right)_{<-\Delta_{i}(d-1) p}=\left(q_{i}^{\frac{1}{2} d(d-1)}\left[\begin{array}{c}
\varepsilon_{i}(\hat{b}) \\
p
\end{array}\right]_{i} d_{b, \tilde{e}_{i}^{\varepsilon_{i}(\hat{b})} \hat{b}}^{i, d}\right)_{<-\Delta_{i}(d-1) p,}
$$

where $\Delta_{i}=\left(\alpha_{i}, \alpha_{i}\right) / 2$ and $d:=\varepsilon_{i}(\hat{b})-p$.
Ref: arXiv1501.01416v2 (Slides: http://www.ms.u-tokyo.ac.jp/~oya)

