Representations of quantized function algebras and the transition matrices from Canonical bases to PBW bases

Hironori Oya

The University of Tokyo

Algebraic Lie Theory and Representation Theory 2015 Okayama, 7/6/2015

Quantized enveloping algebras

- $\bullet \ \mathfrak{g}$ a finite dimensional complex simple Lie algebra
- U_q(𝔅) = ⟨E_i, F_i, K^{±1}_i(i ∈ I)| "usual" relations ⟩_{Q(q)-algebra} (ex. K_iE_j = q^(α_i,α_j)K_iE_j, q-Serre relations,...) the quantized enveloping algebra/Q(q) (a q-analogue of U(𝔅))
 U_q(𝔅⁻) = ⟨F_i|i ∈ I⟩_{Q(q)-algebra} ⊂ U_q(𝔅)

The quantized enveloping algebra $U_q(\mathfrak{g})$ has a Hopf algebra structure. In particular, its coalgebra structure is defined as follows:

$$\Delta(E_i) = E_i \otimes 1 + K_i \otimes E_i, \ \Delta(F_i) = F_i \otimes K_i^{-1} + 1 \otimes F_i, \ \Delta(K_i) = K_i \otimes K_i,$$

$$\varepsilon(E_i) = \varepsilon(F_i) = 0, \varepsilon(K_i^{\pm 1}) = 1.$$

Set $X_i^{(n)} := \frac{X_i^n}{[n]_i!}$ where $[n]_i! := \prod_{s=1}^n \frac{q_i^s - q_i^{-s}}{q_i - q_i^{-1}}$ and $q_i := q^{(\alpha_i, \alpha_i)/2}$. (X = E, F)

Hironori Oya (The University of Tokyo)

PBW bases

Let $\mathbf{i} = (i_1, i_2, \dots, i_N)$ be a reduced word of the longest element w_0 of the Weyl group W. (i.e. $w_0 = s_{i_1} s_{i_2} \cdots s_{i_N} N :=$ the length of w_0 .)

Definition (The PBW bases)

The vectors

$$F_{\mathbf{i}}^{\mathbf{c}} := F_{i_1}^{(c_1)} T_{i_1,1}''(F_{i_2}^{(c_2)}) \cdots T_{i_1,1}'' T_{i_2,1}'' \cdots T_{i_{N-1},1}''(F_{i_N}^{(c_N)})$$

 $(\mathbf{c} = (c_1, c_2, \dots, c_N) \in (\mathbb{Z}_{\geq 0})^N)$ forms a basis of $U_q(\mathfrak{n}^-)$. Here, $T''_{i,1}$ is a *q*-analogue of the action of the braid group. (We follow the notation of Lusztig's textbook.)

Note that this is an explicit basis of $U_q(\mathfrak{n}^-)$. (ex. $\mathfrak{g} = \mathfrak{sl}_3$, $\mathbf{i} = (1, 2, 1)$, $F_{\mathbf{i}}^{(1,1,2)} = F_1(F_2F_1 - qF_1F_2)F_2^{(2)}$.)

Canonical bases

Let i be a reduced word of w_0 . Then, there uniquely exists a basis $\{G^c\}_c$ of $U_q(\mathfrak{n}^-)$ such that

• $\overline{G^{\mathbf{c}}} = G^{\mathbf{c}}$, where $\overline{(\cdot)} \circlearrowright U_q(\mathfrak{n}^-)$ given by $F_i \mapsto F_i, q \mapsto q^{-1}$

•
$$G^{\mathbf{c}} = F_{\mathbf{i}}^{\mathbf{c}} + \sum_{\mathbf{d} > \mathbf{c}} \mathbf{i} \zeta_{\mathbf{d}}^{\mathbf{c}} F_{\mathbf{i}}^{\mathbf{d}}$$
 with $\mathbf{i} \zeta_{\mathbf{d}}^{\mathbf{c}} \in q\mathbb{Z}[q]$.

We consider the lexicographic order on $(\mathbb{Z}_{\geq 0})^N$.

(ex.
$$\mathfrak{g}, \mathbf{i}$$
 as above, $G^{(0,1,0)} = F_2F_1 = (F_2F_1 - qF_1F_2) + qF_1F_2$.)

Definition (The canonical basis)

We call $\{ G^{\mathbf{c}} \}_{\mathbf{c}}$ the canonical basis of $U_q(\mathfrak{n}^-)$.

Remark

In fact, the canonical basis does not depend on the choice of ${\bf i}.$ (The data ${\bf c}$ depend on ${\bf i}.)$

In general, this is a not explicit basis despite having "nice" properties.

We investigate $_{i}\zeta_{d}^{c}$'s via the representation theory of the quantized Hironori Oya (The University of Tokyo) Representations of QFAs ALTRET 2015 4 / 17

Quantized function algebras

The dual space $U_q(\mathfrak{g})^*$ of $U_q(\mathfrak{g})$ has a $\mathbb{Q}(q)$ -algebra structure induced from the coalgebra structure of $U_q(\mathfrak{g})$.

Definition (The quantized function algebra)

The quantized function algebra $\mathbb{Q}_q[G]$ is a subalgebra of $U_q(\mathfrak{g})^*$ generated (in fact, spanned) by the matrix coefficients

$$c_{f,v}^{\lambda} := (u \mapsto \langle f, u.v \rangle),$$

here,

- $\lambda \in P_+(=$ the set of dominant integral weight),
- $V(\lambda)$ the integrable highest weight $U_q(\mathfrak{g})\text{-module}$ with highest weight $\lambda,$

•
$$f \in V(\lambda)^*, v \in V(\lambda).$$

The algebra $\mathbb{Q}_q[G]$ has a Hopf algebra structure induced from the one of $U_q(\mathfrak{g})$ and a left and right $U_q(\mathfrak{g})$ -algebra structure. For example,

•
$$c_{f,v}^{\lambda} c_{f',v'}^{\lambda'} = c_{f \otimes f',v \otimes v'}^{V(\lambda) \otimes V(\lambda')}$$

• $\Delta(c_{f,v}^{\lambda}) = \sum_{j} c_{f,v_{j}}^{\lambda} \otimes c_{f_{j},v}^{\lambda}$ $\{v_{j}\}_{j}$ a basis of $V(\lambda)$, $\{f_{j}\}_{j}$ the dual basis of $V(\lambda)^{*}$. The QFA $\mathbb{Q}_q[G]$ is a quantum analogue of the algebra of regular functions on G. (G the connected simply connected simple complex algebraic group whose Lie algebra is \mathfrak{g} .) However, the algebra $\mathbb{Q}_q[G]$ has infinite dimensional irreducible modules:

$$\mathbb{Q}_q[G] \twoheadrightarrow \mathbb{Q}_{q_i}[SL_2] \frown V_i := \bigoplus_{m \in \mathbb{Z}_{\geq 0}} \mathbb{Q}(q) | m \rangle_i.$$

(dual to $U_{q_i}(\mathfrak{sl}_2) \hookrightarrow U_q(\mathfrak{g})$.)

Theorem (Soibelman ('90))

Let $w \in W$. Then, for any reduced expression $w = s_{i_1} \cdots s_{i_l}$, the $\mathbb{Q}_q[G]$ -module $V_{i_1} \otimes \cdots \otimes V_{i_l}$ is irreducible and its isomorphism class does not depend on the choice of the reduced expressions. Moreover, if $\mathbf{i} = (i_1, \ldots, i_l)$ and $\mathbf{j} = (j_1, \ldots, j_l)$ are reduced words of w, then there is a $\mathbb{Q}_q[G]$ -module isomorphism $\Theta_{\mathbf{j},\mathbf{i}}: V_{i_1} \otimes \cdots \otimes V_{i_l} \to V_{j_1} \otimes \cdots \otimes V_{j_l}$ given by $|(0)\rangle_{\mathbf{i}} \mapsto |(0)\rangle_{\mathbf{j}}$,

where $|\mathbf{c}\rangle_{\mathbf{k}} := |c_1\rangle_{k_1} \otimes \cdots \otimes |c_l\rangle_{k_l} \ (\mathbf{k} = \mathbf{i}, \mathbf{j}).$

Hence, we denote this module by V_w . (i.e. $V_{i_1} \otimes \cdots \otimes V_{i_l}$ and $V_{j_1} \otimes \cdots \otimes V_{j_l}$ are identified via $\Theta_{\mathbf{j},\mathbf{i}}$.)

KOY's result

Theorem (Kuniba-Okado-Yamada ('13))

Let i, j be reduced words of w_0 . Define the $\mathbb{Q}(q)$ -linear isomorphism $\Phi_{\mathbf{k}} : U_q(\mathfrak{n}^-) \to V_{w_0}$ by $F_{\mathbf{k}}^{\mathbf{c}} \mapsto |\mathbf{c}\rangle_{\mathbf{k}}.$ $(\mathbf{k} = \mathbf{i}, \mathbf{j})$ Then, we have $\Phi_{\mathbf{i}} = \Theta_{\mathbf{i}\mathbf{i}} \circ \Phi_{\mathbf{i}}.$

This theorem says that the map $\Phi_{\bf i}$ does not depend on the choice of ${\bf i}.$ (denoted by $\Phi_{\rm KOY}.)$

Strategy

Our approach to the coefficients $_{\mathbf{i}}\zeta_{\mathbf{d}}^{\mathbf{c}}$: (Recall that $G^{\mathbf{c}} = F_{\mathbf{i}}^{\mathbf{c}} + \sum_{\mathbf{d} > \mathbf{c}} {}_{\mathbf{i}}\zeta_{\mathbf{d}}^{\mathbf{c}}F_{\mathbf{i}}^{\mathbf{d}}$.) (I) Find an element $c \in \mathbb{Q}_q[G]$ such that $\Phi_{\mathrm{KOY}}^{-1}(c.|(0)\rangle_{\mathbf{i}}) \in U_q(\mathfrak{n}^-)$

"corresponds" to $G^{\mathbf{c}}$.

(II) Compute $c.|(0)\rangle_i (= \Delta^{(N)}(c).|0\rangle_{i_1} \otimes \cdots \otimes |0\rangle_{i_N})$ directly.

In fact, (I) is easy by using "KOY's conjecture" proved by Saito ('14) and Tanisaki ('14).

Notation

Notation

Fix a highest weight vector $v_{\lambda} \in V(\lambda)$. Consider the nondegenerate symmetric bilinear form $(\ ,\): V(\lambda) \times V(\lambda) \to \mathbb{Q}(q)$ given by

$$(v_{\lambda}, v_{\lambda}) = 1, (E_i.u, v) = (u, F_i.v), (K_i.u, v) = (u, K_i.v).$$

For $v \in V(\lambda)$, define $v^* \in V(\lambda)^*$ by $u \mapsto (v, u)$.

Fix $\mathbf{c} \in (\mathbb{Z}_{\geq 0})^N$ and a reduced word \mathbf{i} of w_0 . Take a sufficiently large positive integer L. In particular, $\mathbf{i}\zeta_{\mathbf{d}}^{\mathbf{c}} \in q^{L-1}\mathbb{Z}[q^{-1}]$ for all \mathbf{d} . (This is NOT a sufficient condition of L.) Set $\lambda := 2(N+1)L\rho$. Here, $\rho :=$ the Weyl vector.

Theorem (O-)

We have

$$\Phi_{\mathrm{KOY}}^{-1}(c_{(G^{\mathbf{c}}.v_{\lambda})^{*},v_{w_{0}\lambda}}^{\lambda}.|(0)\rangle_{\mathbf{i}}) = G^{\mathbf{c}} + q^{L}\sum_{\mathbf{d}\in(\mathbb{Z}_{\geq 0})^{N}}\eta_{\mathbf{d}}F_{\mathbf{i}}^{\mathbf{d}} \text{ with } \eta_{\mathbf{d}}\in\mathbb{Z}[q].$$

Here, $v_{w_0\lambda}$ is the lowest weight canonical basis element of $V(\lambda)$.

Remark that (RHS) =
$$\sum_{\mathbf{d}} ({}_{\mathbf{i}}\zeta_{\mathbf{d}}^{\mathbf{c}} + q^{L}\eta_{\mathbf{d}})F_{\mathbf{i}}^{\mathbf{d}}$$
. Set $G^{\mathbf{c}}.v_{\lambda} := G_{\lambda}^{\mathrm{low}}(b_{0})$.

On the other hand, we have

$$c_{G_{\lambda}^{\text{low}}(b_{0})^{*},v_{w_{0}\lambda}}^{\lambda}.|(0)\rangle_{\mathbf{i}} = \sum_{b_{1},\dots,b_{N-1}\in B(\lambda)} c_{G_{\lambda}^{\text{low}}(b_{0})^{*},G_{\lambda}^{\text{up}}(b_{1})}.|0\rangle_{i_{1}} \otimes c_{G_{\lambda}^{\text{low}}(b_{1})^{*},G_{\lambda}^{\text{up}}(b_{2})}.|0\rangle_{i_{2}} \otimes \cdots \otimes c_{G_{\lambda}^{\text{low}}(b_{N-1})^{*},v_{w_{0}\lambda}}^{\lambda}.|0\rangle_{i_{N}}.$$

$$(\blacklozenge)$$

Here, $\Big\{\,G^{\rm low/up}_\lambda(b)\,\Big\}_{b\in B(\lambda)}$ is the canonical/dual canonical basis of $V(\lambda).$

Lemma

In any non-zero summand of the right-hand side of (\spadesuit), for all k, $c_{G_{\lambda}^{\text{low}}(b_{k-1})^*, G_{\lambda}^{\text{up}}(b_k)} \cdot |0\rangle_{i_k} = p_k |d_k\rangle_{i_k}$ with $d_k := -\frac{1}{2} \langle \operatorname{wt} b_{k-1} + \operatorname{wt} b_k, \alpha_{i_k}^{\vee} \rangle$ and $p_k \in q^{-L}\mathbb{Z}[q]$.

Hence, we may ignore the degree $\geq NL$ part of the Laurent polynomial p_k for any k when calculating $_{\mathbf{i}}\zeta^{\mathbf{c}}_{\mathbf{d}}$.

(Recall that
$$c^{\lambda}_{G^{\text{low}}_{\lambda}(b_{k-1})^*, G^{\text{up}}_{\lambda}(b_k)}$$
. $|0\rangle_{i_k} = p_k |d_k\rangle_{i_k}$.)

Theorem (O-)

In any summand of the right-hand side of (\bigstar) which contributes to $\mathbf{i}\zeta_{\mathbf{d}}^{\mathbf{c}}$, (i) $G_{\lambda}^{\mathrm{low}}(b_{k}) \in U_{q}(\mathfrak{n}^{-}).v_{s_{i_{k}}\cdots s_{i_{1}}\lambda}$ $(k = 0, \dots, N)$, and (ii) the degree < NL part of p_{k} is of the form $q_{i_{k}}^{\frac{1}{2}d_{k}(d_{k}-1)}d_{\mathbf{s}_{k},\mathbf{t}}^{i_{k},d_{k}}$ for some $\mathbf{t} \in (\mathbb{Z}_{\geq 0})^{N}$. $(k = 1, \dots, l(w_{0}))$ Here, $G^{\mathbf{s}_{k}}.v_{s_{i_{k}-1}}\cdots s_{i_{1}}\lambda = G_{\lambda}^{\mathrm{low}}(b_{k-1})$ and $(e'_{i_{k}})^{d_{k}}(G^{\mathbf{s}_{k}}) = \sum_{\mathbf{t}} d_{\mathbf{s}_{k},\mathbf{t}}^{i_{k},d_{k}}G^{\mathbf{t}}$. $(e'_{i_{k}}$ "the q-derivation")

Remark 1

In fact, this "calculation procedure" coincides with the one using the symmetric bilinear form $(\ ,\)_-$ on $U_q(\mathfrak{n}^-)$ such that

$$(1,1)_{-} = 1$$
 and $(F_i x, y)_{-} = \frac{1}{1 - q_i^2} (x, e_i'(y))_{-}.$

Sketch We have

$$_{\mathbf{i}}\zeta_{\mathbf{d}}^{\mathbf{c}} = (G^{\mathbf{c}}, \tilde{F}_{\mathbf{i}}^{\mathbf{d}})_{-},$$

where $\tilde{F}_{\mathbf{i}}^{\mathbf{d}}$ is the dual PBW basis. Calculate the right-hand side using the fact: For $x, y \in \operatorname{Ker} e'_i(\subset U_q(\mathfrak{n}^-))$, we have

$$(x,y) = ((T''_{i,1})^{-1}(x), (T''_{i,1})^{-1}(y)).$$

"Eliminate $T_{i,1}''$ " \leftrightarrow "Go to subsequent Demazure modules"

Remark 2

The following property of canonical bases is technically important:

Proposition (Similarity of the structure constants)

We set

W

$$\begin{split} F_i^{(p)}G^{\mathrm{low}}(b) &= \sum_{\tilde{b}\in B(\infty)} c_{-pi,b}^{\tilde{b}}G^{\mathrm{low}}(\tilde{b}), \\ (e_i')^p(G^{\mathrm{low}}(b)) &= \sum_{\tilde{b}\in B(\infty)} d_{b,\tilde{b}}^{i,p}G^{\mathrm{low}}(\tilde{b}). \end{split}$$

Then, for any $b, \hat{b} \in B(\infty), i \in I$ and $p \in \mathbb{Z}_{\geq 0}$, we have

$$\begin{pmatrix} c_{-pi,b}^{\hat{b}} \end{pmatrix}_{<-\Delta_i(d-1)p} = \left(q_i^{\frac{1}{2}d(d-1)} \begin{bmatrix} \varepsilon_i(\hat{b}) \\ p \end{bmatrix}_i d_{b,\tilde{e}_i^{\varepsilon_i(\hat{b})}\hat{b}}^{i,d} \right)_{<-\Delta_i(d-1)p,}$$
 where $\Delta_i = (\alpha_i, \alpha_i)/2$ and $d := \varepsilon_i(\hat{b}) - p.$

 $\label{eq:rescaled} \mbox{Ref: arXiv1501.01416v2 (Slides: http://www.ms.u-tokyo.ac.jp/~oya)}$

Hironori Oya (The University of Tokyo)