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Aims

Aims of this talk:
Establish a quantum analogue of the Chamber Ansatz

– Relate Feigin homomorphisms to quantum cluster structures
– Explicit description of quantum twist automorphisms

The compatibility between quantum twist automorphisms and
quantum cluster structures

Partial results of the periodicity of quantum twist automorphisms
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Introduction

Original story (q = 1): Consider the following torus embedding;

yi : (C×)` → Nw
− := N− ∩B+wB+

∈ ∈

(t1, . . . , t`) 7−→ exp(t1Fi1) · · · exp(t`Fi`).

Here i is a reduced word of w and Nw
− is called a unipotent cell. This

gives a birational morphism from C` to a Schubert variety Xw.
By the way, the restriction yi |(R>0)` gives a bijection between (R>0)`

and “totally positive elements” in Nw
− [Lusztig].

Problem
Describe the inverse birational morphism y−1

i .

Berenstein, Fomin, Zelevinsky (1996, 1997) give formulae for y−1
i ,

and the resulting substitutions are called “the Chamber Ansatz”. The
key tool is a twist automorphism ηw : Nw

− → Nw
− .
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Example

g = sl3, w = w0 = s1s2s1, i = (1, 2, 1).

Nw0
− =


 1 0 0
x21 1 0
x31 x32 1

∣∣∣∣∣∣x31 6= 0, x21x32 − x31 6= 0

 .

Note that x21x32 − x31 is the minor corresponding to the row set
{2, 3} and the column set {1, 2}. (Such minor will be denoted by
∆23,12.)

 The Chamber Ansatz (later) gives the general formulae!
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Example

g = sl3, w = w0, i = (1, 2, 1), Nw0
− = {∆3,1 6= 0,∆32,12 6= 0}.

y1(t) =

1 0 0
t 1 0
0 0 1

 y2(t) =

1 0 0
0 1 0
0 t 1


yi(t1, t2, t3) =

 1 0 0
t1 + t3 1 0
t2t3 t2 1


Then, for X =

 1 0 0
x21 1 0
x31 x32 1

, we have

t1 =
x21x32 − x31

x32

t2 = x32 t3 =
x31

x32

.

 The Chamber Ansatz (later) gives the general formulae!
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Introduction (2)

There are known q-analogues Aq[N
w
− ], Φi and ηw,q of C[Nw

− ], yi and
η∗w. The q-analogue Φi of yi is called a Feigin homomorphism.

Theorem (O.)

The Chamber Ansatz formulae also hold in quantum settings by using
quantum twist automorphisms constructed by Kimura and the author.

By the work of Geiss-Leclerc-Schröer and Goodearl-Yakimov, it is
known that there exist many other “embeddings of quantum tori into
the quantum unipotent cell” Aq[N

w
− ] as a consequence of their

quantum cluster algebra structures.
The relation between these embedding and the embedding Φi are
given by the quantum Chamber Ansatz formulae.
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The Chamber Ansatz (q = 1)

Let
g a semisimple Lie algebra over C, g = n− ⊕ h⊕ n+ triangular
decomposition (fixed),
{Ei, Fi, Hi | i ∈ I} Chevalley generators of g, A = (aij)i,j∈I the
Cartan matrix (i.e. [Hi, Ej] = aijEj, . . . ),
G connected simply connected algebraic group (over C) with
LieG = g,
N−, H, N+ closed subgroups of G such that LieN− = n−,
LieH = h, LieN+ = n+,
B− := N−H, B+ := HN+ Borel subgroups,
xi(t) = exp(tEi), yi(t) = exp(tFi) 1-parameter subgroups
corresponding to Ei, Fi,
W := NG(H)/H Weyl group, e its unit, {si | i ∈ I} simple
reflections, `(w) the length of w ∈ W ,

Definition (Generalized minors)

For i ∈ I, denote by ∆$i,$i the regular function on G whose
restriction to the open dense set G0 is given by

∆$i,$i(g) := $i([g]0)

For w1, w2 ∈ W , define ∆w1$i,w2$i ∈ C[G] by

∆w1$i,w2$i(g) = ∆$i,$i(w1
−1gw2)

These elements are called generalized minors.
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The Chamber Ansatz (q = 1)

Let g, G, N±, H, B±, xi(t), yi(t), W standard notation.
I(w) := {(i1, . . . , i`(w)) ∈ I`(w) | w = si1 · · · si`(w)

} the set of
reduced words of w ∈ W ,
si := xi(−1)yi(1)xi(−1), w := si1 · · · si` , (i1, . . . , i`) ∈ I(w).
In fact, w does not depend on the choice of (i1, . . . , i`) ∈ I(w).
{$i}i∈I ⊂ Homalg.grp.(H,C×) fundamental weights.
G0 := N−HN+, and g = [g]−[g]0[g]+ (g ∈ G0) the
corresponding decomposition.
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The Chamber Ansatz (q = 1) (2)

For w ∈ W , set Nw
− := N− ∩B+w̄B+ unipotent cell.

Fact ([Berenstein, Fomin, Zelevinsky])

There is a biregular morphism ηw : Nw
− → Nw

− given by

ηw(z) := [zTw]−.

This is called a twist automorphism.

Recall the map

yi : (C×)` → Nw
−

∈ ∈

(t1, . . . , t`) 7−→ yi1(t1) · · · yi`(t`).
Here i = (i1, . . . i`) ∈ I(w).

Theorem (Berenstein, Fomin, Zelevinsky)

Let i = (i1, . . . , i`) ∈ I(w). For m ∈ {1, . . . , `}, set
w≤m := si1 · · · sim . Set y = yi(t1, . . . , t`). Then, for k ∈ {1, . . . , `},

tk =

∏
j∈I\{ik}∆w≤k$j ,$j(η

−1
w (y))−aj,ik

∆w≤k−1$ik ,$ik
(η−1
w (y))∆w≤k$ik ,$ik

(η−1
w (y))

.

These formulae are called the Chamber Ansatz.
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Example

g = sl3, w = w0, i = (1, 2, 1), Nw0
− = {∆3,1 6= 0,∆32,12 6= 0}. Recall

t1 =
x21x32 − x31

x32

t2 = x32 t3 =
x31

x32

.

The twist automorphism ηw0 is given by 1 0 0
x21 1 0
x31 x32 1

 7→
 1 0 0
x32/x31 1 0
1/x31 x21/(x21x32 − x31) 1

 ,

and η−1
w0

is given by 1 0 0
x21 1 0
x31 x32 1

 7→
 1 0 0
x32/(x21x32 − x31) 1 0

1/x31 x21/x31 1

 .

η−1
w0

: X =

 1 0 0
x21 1 0
x31 x32 1

 7→
 1 0 0
x32/(x21x32 − x31) 1 0

1/x31 x21/x31 1

 .

Therefore, we have

t1 =
1

∆2,1(η−1
w0

(X))
t2 =

∆2,1(η−1
w0

(X))

∆23,12(η−1
w0

(X))

t3 =
∆23,12(η−1

w0
(X))

∆2,1(η−1
w0

(X))∆3,1(η−1
w0

(X))
.
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q-analogue

From now on, we consider a q-analogue of the story above. In the
settings of q-analogues, we do not have “actual spaces” but only
have “coordinate algebras”. Hence we should consider the situations
above in terms of coordinate algebras.
The map y∗i induces an injective algebra homomorphism

y∗i : C[Nw
− ]→ C[t±1

1 , . . . , t±` ].

The twist automorphism ηw induces the algebra automorphism

η∗w : C[Nw
− ]→ C[Nw

− ].

A q-analogue of the former is known as a Feigin homomorphism and
that of the latter is a quantum twist automorphism, constructed by
Kimura and the author.
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Setup

Notation
Let

g = n+ ⊕ h⊕ n− a symmetrizable Kac-Moody Lie algebra(⊃
finite dimensional simple Lie algebra) over C with (fixed)
triangular decomposition,

{αi}i∈I the simple roots of g, {hi}i∈I the simple coroots of g,

P a Z-lattice (weight lattice) of h∗ and P ∗ := HomZ(P,Z) ⊂ h
such that {αi}i∈I ⊂ P and {hi}i∈I ⊂ P ∗,

P+ := {λ ∈ P | 〈hi, λ〉 ≥ 0 for all i ∈ I}. Set 〈hi, $j〉 = δij.

W the Weyl group of g (W y P, P ∗),

I(w) the set of reduced words of w ∈ W ,

(−,−) : P × P → Q a Q-valued (W -invariant) symmetric
Z-bilinear form on P satisfying the following conditions:
(αi, αi) ∈ 2Z>0, 〈λ, hi〉 = 2 (λ, αi) / (αi, αi) for i ∈ I, λ ∈ P.
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Quantized enveloping algebra

Definition (Quantized enveloping algebras)

The quantized enveloping algebra Uq(:= Uq(g)) over Q(q) is the
Q(q)-algebra generated by

ei, fi (i ∈ I), qh (h ∈ P ∗),

with the following relations:
(i) q0 = 1, qhqh

′
= qh+h′ ,

(ii) qhei = q〈h,αi〉eiq
h, qhfi = q−〈h,αi〉fiq

h,

(iii) [ei, fj] = δij
ti − t−1

i

qi − q−1
i

where qi := q
(αi,αi)

2 and ti := q
(αi,αi)

2
hi ,

(iv)
∑1−〈hi,αj〉

k=0 (−1)kx
(k)
i xjx

(1−〈hi,αj〉−k)
i = 0 for i 6= j, x = e, f ,

where x
(n)
i := xni /[n]i!, [n]i! :=

∏n
k=1(qki − q−ki )/(qi − q−1

i ).
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Quantum unipotent subgroup

Let U−q be the subalgebra of Uq generated by {fi}i∈I and U−Q[q±1]

the Q[q±1]-subalgebra of U−q generated by {f (n)
i }i∈I,n∈Z≥0

.

Definition
There exists a unique nondegenerate symmetric Q(q)-bilinear form
( , )L : U−q ×U−q → Q(q) such that

(1, 1)L = 1, (fix, y)L =
1

1− q2
i

(x, e′i(y))L.

where e′i : U
−
q → U−q is the Q(q)-linear map given by

e′i (xy) = e′i (x) y + q
〈wtx,hi〉
i xe′i (y) , e′i(fj) = δij,

for homogeneous elements x, y ∈ U−q .

Set
AQ[q±1][N−] := {x ∈ U−q | (x,U−Q[q±1])L ∈ Q[q±1]}.

Then AQ[q±1][N−] is a Q[q±1]-subalgebra of U−q .
Specialization:

U−q ⊃ AQ[q±1][N−]
“q→1”−−−−−−→

C⊗Q[q±1]−
(U(n−))∗gr ' C[N−].

Thus we can regard U−q also as a q-analogue of the coordinate
algebra C[N−].
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Quantum closed unipotent cell

Proposition (Kashiwara)

For w ∈ W and i = (i1, . . . , i`) ∈ I(w), set

U−q,w :=
∑

a1,··· ,a`

Q (q) fa1i1 · · · f
a`
i`
.

Then the following hold:

(1) The subspace U−q,w does not depend on the choice of i ∈ I(w).

(2) Set (U−q,w)⊥ := {x ∈ U−q | (x,U−q,w)L = 0}. Then (U−q,w)⊥ is a
two-sided ideal of U−q .

Set

(U−q,w)⊥Q[q±1] := {x ∈ (U−q,w)⊥ | (x,U−Q[q±1])L ⊂ Q[q±1]},
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Quantum closed unipotent cell (2)

Definition (Quantum closed unipotent cell)

For w ∈ W , set

Aq[Nw
− ] := U−q /(U

−
q,w)⊥ = Q(q)⊗Q[q±1]

(
AQ[q±1][N−]/(U−q,w)⊥Q[q±1]

)
.

This is an algebra, called a quantum closed unipotent cell, by the
proposition above.

In fact, we have

AQ[q±1][N
w
− ] := AQ[q±1][N−]/(U−q,w)⊥Q[q±1]

“q→1”−−−−−−→
C⊗Q[q±1]−

C[Nw
− ].
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Unipotent quantum minors

For λ ∈ P+, denote by V (λ) the integrable highest weight
Uq-module generated by a highest weight vector uλ of weight λ.
For w ∈ W and i ∈ I(w), set

uwλ = f
(〈hi1 ,si2 ···si`λ〉)
i1

· · · f
(〈hi`−1

,si`λ〉)
i`−1

f
(〈hi` ,λ〉)
i`

.uλ.

There exists a unique nondegenerate and symmetric bilinear form
( , )λ : V (λ)× V (λ)→ Q(q) such that

(uλ, uλ)λ = 1 (ei.u, v)λ = (u, fi.v)λ (qh.u, v)λ = (u, qh.v)λ

for u, v ∈ V (λ), i ∈ I and h ∈ P ∗.

Definition (Unipotent quantum minors)

For λ ∈ P+ and u, v ∈ V (λ), define an element Du,v ∈ U−q by

(Du,v, x)L = (u, x.v)λ for arbitrary x ∈ U−q .

For w1, w2 ∈ W , write Dw1λ,w2λ := Duw1λ
,uw2λ

.
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Quantum unipotent cell

Proposition

Let w ∈ W . Then Dw := qZ{Dwλ,λ}λ∈P+ is an Ore set of Aq[Nw
− ]

consisting of q-central elements.

Definition (Quantum unipotent cells)

For w ∈ W , we can consider the algebras of fractions

Aq[N
w
− ] := Aq[Nw

− ][D−1
w ]

by the proposition above. This algebra is called a quantum unipotent
cell.
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Quantum twist maps

Theorem (Kimura-O)

Let w ∈ W . Then there exists the automorphism of the Q(q)-algebra

ηw,q : Aq[N
w
− ]→ Aq[N

w
− ],

given by
Du,uλ 7→ q−(λ,wtu−λ)Dwλ,λ

−1Duwλ,u

for all λ ∈ P+ and weight vectors u ∈ V (λ).

We call ηw,q a quantum twist automorphism.
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Feigin homomorphisms

Definition (Feigin homomorphisms)

Let i = (i1, . . . , i`) ∈ I`. The Laurent q-polynomial algebra Li is the
unital associative Q(q)-algebra generated by t±1

1 , . . . , t±1
` subject to

the relations;

tjtk = q(αij ,αik )tktj for 1 ≤ j < k ≤ `,

tkt
−1
k = t−1

k tk = 1 for 1 ≤ k ≤ `.

Then we can define the Q(q)-linear map Φi : U−q → Li by

x 7→
∑

a=(a1,...,a`)∈Z`≥0

qi(a)(x, f
(a1)
i1
· · · f (a`)

i`
)Lt

a1
1 · · · t

a`
` ,

where qi(a) :=
∏`

k=1 q
ak(ak−1)/2
ik

. Note that the all but finitely many
summands in the right-hand side are zero. The map Φi is called a
Feigin homomorphism.
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Feigin homomorphisms (2)

Proposition (Berenstein)

(1) For i ∈ I`, the map Φi is a Q(q)-algebra homomorphism.

(2) For w ∈ W and i ∈ I(w), we have Ker Φi =
(
U−w,q

)⊥
.

(3) For w ∈ W , i = (i1, . . . , i`) ∈ I(w) and λ ∈ P+, we have

Φi (Dwλ,λ) = qi(d)td11 · · · t
d`
`

where d = (d1, . . . , d`) with dk := 〈hik , sik+1
· · · si`λ〉.

Hence Φi gives rise to an injective algebra homomorphism

Φi : Aq[N
w
− ]→ Li.
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The quantum Chamber Ansatz

Theorem (O.)

Let w ∈ W , i = (i1, . . . , i`) ∈ I(w) and k ∈ {1, . . . , `}. Then

(Φi ◦ η−1
w,q)(Dw≤k$ik ,$ik

) =

(
k∏
j=1

q
dj(dj+1)/2
ij

)
t−d11 t−d22 · · · t−dkk ,

where dj := 〈hij , sij+1
· · · sik$ik〉 (j = 1, . . . , k). Denote this

element by D
′ (i)
w≤k$ik ,$ik

∈ Li.

Corollary (The quantum Chamber Ansatz)

Let i = (i1, . . . , i`) ∈ I(w). Then, for k ∈ {1, . . . , `},

tk ' (D′ (i)w≤k−1$ik ,$ik
)−1(D′ (i)w≤k$ik ,$ik

)−1
∏

j∈I\{ik}

(D′ (i)w≤k$j ,$j
)−aj,ik ,

here the right-hand side is determined up to powers of q.
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Example

g = sl3, w = w0, i = (1, 2, 1). Write Ds1π1,π1 = D2,1 etc.. (In type
A, the unipotent quantum minors associated with the fundamental
representations correspond to the q-analogues of usual minors.)

η−1
w,q(D2,1) = D−1

23,12D13,12, η
−1
w,q(D23,12) = qD−1

23,12, η
−1
w,q(D3,1) = qD−1

3,1.cf. η−1
w0

(X) =

 1 0 0
x32/(x21x32 − x31) 1 0

1/x31 x21/x31 1

 .


D
′ (i)
2,1 = qt−1

1 D
′ (i)
23,12 = q2t−1

1 t−1
2 D

′ (i)
3,1 = q2t−1

2 t−1
3 .

Hence,
t1 = q(D

′ (i)
2,1 )−1 t2 = q(D

′ (i)
23,12)−1D

′ (i)
2,1

t3 = (D
′ (i)
2,1 )−1(D

′ (i)
3,1 )−1D

′ (i)
23,12.

Hironori Oya (The University of Tokyo) The Quantum Chamber Ansatz ALTReT 2017, 13/6/2017 21 / 29



Quantum cluster algebra

A quantum cluster algebra is a subalgebra of the fraction field F of a
quantum torus TM , determined by a skew-symmetric bilinear form
Λ: Z` × Z` → Z, which determines the data of the q-commutativity
of the variables.
The initial data (M,ΛM , B), called an initial quantum seed.

M a toric chart, which indicates a quantum torus TΛM (or
quantum cluster) inside F
B a exchange matrix, which governs mutation.

The quantum cluster algebra Aq±1/2(M,ΛM , B) is defined as the

Q[q±1/2]-subalgebra of F generated by all quantum clusters obtained
by iterated mutations.
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Quantum cluster algebra (2)

The following property is known as the Laurent phenomenon.

Proposition ([Berenstein-Zelevinsky])

Aq±1/2(M,ΛM , B) ⊂
⋂
M

TM .

Geiss-Leclerc-Schröer have realized the quantum unipotent cell
Aq[N

w
− ] as the quantum cluster algebras constructed from the

representations of preprojective algebras. This is called the additive
categorification of Aq[N

w
− ]. In particular, we have the two kinds of

“quantum torus embedding”;

Li
Feigin homomorphism←−−−−−−−−−−− Aq[N

w
− ]

cluster structure−−−−−−−−→ TM

We will explain their relations. (In fact, the answer is already given
by the quantum Chamber Ansatz!)

Hironori Oya (The University of Tokyo) The Quantum Chamber Ansatz ALTReT 2017, 13/6/2017 23 / 29



Relation with GLS theory

From now on, we assume that g is a symmetric Kac-Moody Lie
algebra. Let Q = (Q0, Q1, s, t) be a corresponding finite quiver
without oriented cycles. Denote by Λ the preprojective algebra
corresponding to Q, that is,

Λ := CQ/(
∑
a∈Q1

(a∗a− aa∗)),

here CQ is the path algebra of the double quiver of Q. For a
nilpotent Λ-module X, we can define ϕX ∈ C[Nw

− ] satisfying the
following:

ϕX(yi(t1, . . . , t`)) =
∑

a=(a1,...,a`)∈Z`≥0

χ(Fi,a,X)ta11 · · · t
a`
` ,

here i ∈ I(w), χ denotes the Euler characteristic, and Fi,a,X is the
projective variety of flags X• = (X = X0 ⊃ X1 ⊃ · · · ⊃ X` = 0) of
submodules of X such that Xk−1/Xk ' Sakik for 1 ≤ k ≤ ` [Lusztig].
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Relation with GLS theory (2)

Buan-Iyama-Reiten-Scott have constructed a 2-Calabi-Yau Frobenius
subcategory Cw of Λ-modules, and Geiß-Leclerc-Schröer have proved
that

C[Nw
− ] = spanC{ϕX | X ∈ Cw}[{ϕI | I : Cw-injective-projective}−1].

Here an object is projective in Cw (Cw-projective) if and only if it is
injective in Cw (Cw-injective) since Cw is Frobenius.
For X ∈ Cw, denote by I(X) the injective hull of X in Cw, and by
Ω−1
w (X) the cokernel of X → I(X).

0→ X → I(X)→ Ω−1
w (X)→ 0.
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Relation with GLS theory (3)

Theorem (GLS)

Let w ∈ W . For X ∈ Cw, η∗w(ϕX) = ϕ−1
I(X)ϕΩ−1

w (X).

GLS have also constructed the algebra Aq[N
w] from Cw and

constructed a q-analogue of ϕM , denoted by YM , for every reachable
rigid module M . By using the theorem above, we obtain the
following:

Theorem (Kimura-O)

Let w ∈ W . For a reachable rigid module M ,

ηw,q(YM) ' Y −1
I(M)YΩ−1

w (M).

This theorem states that quantum cluster monomials (which admit
the inverses at the frozen part) are preserved by the quantum twist
automorphism.
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Relation with GLS theory (4)

In GLS’s categorification, the initial seed Yi := {YMi,k
}k=1,...,`

corresponds to {Dw≤k$ik ,$ik
}k=1,...,`. This is noting but the elements

appearing in the (quantum) Chamber Ansatz formulae.
By Theorem above, the elements Y′i := {η−1

w,q(YMi,k
)}i=1,...,` are also

a cluster (up to frozen variables). Hence, via the quantum Chamber
Ansatz formulae,

Calculating the image of the Feigin homomorphism “=”
Calculating the cluster expansion with respect to Y′i.
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Example

g = sl3, w = w0, i = (1, 2, 1).

η−1
w,q(D2,1) = D−1

23,12D13,12, η
−1
w,q(D23,12) = qD−1

23,12, η
−1
w,q(D3,1) = qD−1

3,1.

Now {D2,1, D23,12, D3,1} is the initial quantum cluster, and
{D13,12, D23,12, D3,1} is also a quantum cluster.
For example, we have Φi(D2,1) = t1 + t3. Hence,

Φi(D2,1) = q(D
′ (i)
2,1 )−1 + (D

′ (i)
2,1 )−1(D

′ (i)
3,1 )−1D

′ (i)
23,12.

Therefore,

D2,1 = qD−1
13,12D23,12 +D−1

13,12D23,12D3,1D
−1
23,12

= qD−1
13,12D23,12 +D−1

13,12D3,1.

Hironori Oya (The University of Tokyo) The Quantum Chamber Ansatz ALTReT 2017, 13/6/2017 28 / 29



Periodicity

It is known that
(Ω−1

w0
)6(M) 'M

for an indecomposable non-projective-injective module M . This
property suggests (and proves in the ADE case) the “6-periodicity”
of the specific quantum twist automorphism ηw0,q. Assume that g is
finite dimensional, and let w0 be the longest element of W .

Theorem (Kimura-O.)

For a homogeneous element x ∈ Aq[N
w0
− ], we have

η6
w0,q

(x) = q(wtx+w0 wtx,wtx)Dw0,−wtx−w0 wtxx.

We proved this theorem purely in the algebraic method (not using
the categorification). Hence this result is also valid for the
non-symmetric case.

When the action of w0 on P is given by µ 7→ −µ, the theorem above
states that η6

w0,q
= id (“really” periodic). If g is simple, then this

condition is satisfied in the case that g is of type Bn, Cn, D2n for
n ∈ Z>0 and E7, E8, F4, G2.
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