Quantum Grothendieck ring isomorphisms for quantum affine algebras of type \mathbf{A} and B

Hironori OYA

Université Paris Diderot, IMJ-PRG
Based on a joint work with David HERNANDEZ
Séminaire de Théorie des Groupes
Lamfa - Université de Picardie Jules Verne, June 14, 2018

Motivation (1)

Topic : Finite dimensional representations of affine quantum groups

Question 1

Dimensions/q-characters of simple modules ?

- \exists Classification of simple modules [Chari-Pressley 1990's] "Highest weight theory"
- However, there are NO known closed formulae of their dimensions and q-characters in general. (e.g. \nexists analogue of Weyl-Kac character formulae...)

Question 2

Description of representation rings and their "deformations"?

- Some (deformed) representation rings are known to be described nicely as (quantum) cluster algebras...

Motivation (2)

Question 1

Dimensions/q-characters of simple modules ?

 "Kazhdan-Lusztig algorithm"
The tool is t-deformed q-character, and the geometric construction (via quiver varieties) of simple modules guarantees this algorithm.

- Arbitrary (untwisted) case [Hernandez '04]
- $\exists t$-deformed q-characters, defined algebraically (\nexists geometry for non-symmetric cases)
- Kazhdan-Lusztig algorithm gives conjectural q-characters of simple modules

However, they are still candidates in non-symmetric cases.

Motivation (3)

Question 2

Description of representation rings and their "deformations" ?

- [Hernandez-Leclerc '10 -, Kang-Kashiwara-Kim-Oh '15, Oh-Suh '16] The category of finite dimensional modules of affine quantum groups has several interesting monoidal subcategories $\left(\mathcal{C}_{\mathbb{Z}}, \mathcal{C}_{\mathbb{Z}}^{-}, \mathcal{C}_{\ell}, \ell \in \mathbb{Z}, \mathcal{C}_{\mathcal{Q}}\right.$ etc. $)$, which are expected to be "monoidal categorifications" of cluster algebras (this fact is indeed proved in many cases).

Motivation (3)

Question 2

Description of representation rings and their "deformations" ?
$-\underline{\mathrm{X}}=\mathrm{ADE}$ case Let

- $K_{t}\left(\mathcal{C}_{\mathcal{Q}, \mathrm{X}}^{n}(1)\right)$ the t-deformed Grothendieck ring (=quantum Grothendieck ring) of $\mathcal{C}_{\mathcal{Q}, \mathrm{X}_{n}^{(1)}}$ for type $\mathrm{X}_{n}^{(1)}$
- $\mathcal{A}_{v}\left[N_{-}^{\mathrm{X}_{n}}\right]$ the quantized coordinate algebra of the unipotent group of type X_{n} (\exists quantum cluster algebra structure !)
(Each terminology will be explained later.)

Theorem (Hernandez-Leclerc '15)

$K_{t}\left(\mathcal{C}_{\mathcal{Q}, \mathrm{X}_{n}^{(1)}}\right) \simeq \mathcal{A}_{v}\left[N_{-}^{\mathrm{X}_{n}}\right],\left\{\begin{array}{c}(q, t) \text {-characters of } \\ \text { simple modules }\end{array}\right\} \leftrightarrow$ dual canonical basis.
Does it also hold in non-symmetric cases ?

Overview of Main results

In this talk, we consider the case of type $\mathrm{B}_{n}^{(1)}$. Let $\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$ be the monoidal subcategory $\mathcal{C}_{\mathcal{Q}}$ for type $\mathrm{B}_{n}^{(1)}$.

Theorem (Hernandez-O.)

$$
\begin{aligned}
& K_{t}\left(\mathcal{C}_{\mathcal{Q}^{,} B_{n}^{(1)}}\right) \simeq \mathcal{A}_{v}\left[N_{-}^{A_{2 n-1}}\right] \stackrel{[\mathrm{H} L]}{\sim} \quad K_{t}\left(\mathcal{C}_{\mathcal{Q}^{\prime}, A_{A_{2 n-1}^{(1)}}}\right) \\
& \left\{\begin{array}{c}
(q, t) \text {-characters of } \\
\text { simple modules }
\end{array}\right\} \leftrightarrow \text { dual canonical basis } \stackrel{[H L]}{\longleftrightarrow}\left\{\begin{array}{c}
(q, t) \text {-characters of } \\
\text { simple modules }
\end{array}\right\}
\end{aligned}
$$

Remark

There are no known direct relations between the quantum affine algebras of type $\mathrm{B}_{n}^{(1)}$ and $\mathrm{A}_{2 n-1}^{(1)}$ themselves !

Overview of Main results

Let $\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$ be the monoidal subcategory $\mathcal{C}_{\mathcal{Q}}$ for type $\mathrm{B}_{n}^{(1)}$.

Theorem (Hernandez-O.)

$$
\begin{array}{cccc}
K_{t}\left(\mathcal{C}_{\mathcal{Q}, \mathrm{B}}^{(1)}\right) & \simeq & \mathcal{A}_{v}\left[N_{-}^{\mathrm{A}_{2 n-1}}\right] & \stackrel{[\mathrm{HL}]}{\sim}
\end{array} K_{t}\left(\mathcal{C}_{\mathcal{Q}^{\prime}, \mathrm{A}_{2 n-1}^{(1)}}\right)
$$

Kashiwara-Oh established an isomorphism between $K_{t=1}\left(\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right)$ and $\mathbb{C}\left[N_{-}^{\mathrm{A}_{2 n-1}}\right]$ by a different method. Combining this result with our theorem above, we obtain the following :

Theorem (Hernandez-O.)

The (q, t)-characters of simple modules in $\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$ specialize to the corresponding q-characters.

Overview of Main results

Let $\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$ be the monoidal subcategory $\mathcal{C}_{\mathcal{Q}}$ for type $\mathrm{B}_{n}^{(1)}$.

Theorem (Hernandez-O.)

Theorem (Hernandez-O.)

The (q, t)-characters of simple modules in $\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$ specialize to the corresponding q-characters.
\rightsquigarrow The Kazhdan-Lusztig algorithm gives "correct" answers in $\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$!

Quantum affine algebras

Let

- \mathfrak{g} a finite dimensional simple Lie algebra / \mathbb{C}
- $\mathcal{L g}:=\mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}\left[t^{ \pm 1}\right]$ its loop algebra $\left[X \otimes t^{m}, Y \otimes t^{m}\right]=[X, Y] \otimes t^{m+m^{\prime}}$
- $\mathcal{U}_{q}(\mathcal{L g})$ the Drinfeld-Jimbo quantum loop algebra / \mathbb{C} with a parameter $q \in \mathbb{C}^{\times}$not a root of unity generators : $\left\{k_{i}^{ \pm 1}, x_{i, r}^{ \pm}, h_{i, s} \mid i \in I, r \in \mathbb{Z}, s \in \mathbb{Z} \backslash\{0\}\right\}$

Properties

- $\mathcal{U}_{q}(\mathcal{L} \mathfrak{g})$ has a Hopf algebra structure.
- $\mathcal{U}_{q}(\mathfrak{g}) \underset{\text { Hopf alg. }}{\hookrightarrow} \mathcal{U}_{q}(\mathcal{L} \mathfrak{g}), e_{i} \mapsto x_{i, 0}^{+}, f_{i} \mapsto x_{i, 0}^{-}, k_{i}^{ \pm 1} \mapsto k_{i}^{ \pm 1}$.

Let \mathcal{C} be the category of finite-dimensional $\mathcal{U}_{q}(\mathcal{L} \mathfrak{g})$-modules of type 1 (i.e. the eigenvalues of the actions of $\left\{k_{i} \mid i \in I\right\}$ are of the form $q^{m}, m \in \mathbb{Z}$).

Remark: \mathcal{C} is a non-semisimple abelian \otimes-category.

q-characters (1)

Let $V \in \mathcal{C}$. Frenkel-Reshetikhin showed that
$\left\{\right.$ Generalized simultaneous eigenvalues of all $\left.k_{i}^{ \pm 1}, h_{i, s} \curvearrowright V\right\} \stackrel{1: 1}{\leadsto}$ $\left\{\right.$ Laurent monomials m in $Y_{i, a}$'s $\left.\left(i \in I, a \in \mathbb{C}^{\times}\right)\right\}$
$\rightsquigarrow V=\bigoplus_{m} V_{m}$, called the ℓ-weight space decomposition.
$Y_{i, a}$ is an "affine analogue" of $e^{\varpi_{i}}, \varpi_{i}$ fundamental weight.
Define the q-character of V as

$$
\chi_{q}(V):=\sum_{m} \operatorname{dim}\left(V_{m}\right) m
$$

Then χ_{q} defines an injective algebra homomorphism

$$
\chi_{q}: K(\mathcal{C}) \rightarrow \mathbb{Z}\left[Y_{i, a}^{ \pm 1} \mid i \in I, a \in \mathbb{C}^{\times}\right]=: \mathcal{Y}_{\mathbb{C}^{\times}}
$$

here $K(\mathcal{C})$ be the Grothendieck ring of \mathcal{C} [Frenkel-Reshetikhin].
$K(\mathcal{C})$ is commutative. (However sometimes $V \otimes W \not \approx W \otimes V$ in \mathcal{C}.)

q-characters (2)

Set $\mathcal{B}_{\mathbb{C}}:=\left\{\prod_{i \in I, a \in \mathbb{C} \times} Y_{i, a}^{m_{i, a}} \mid m_{i, a} \geq 0\right\} \subset \mathcal{Y}_{\mathbb{C}}$ dominant monomials.

Classification of simple modules [Chari-Pressley]

There is a one-to-one correspondence :

\exists an "affine analogue" $A_{i, a} \in \mathcal{Y}_{\mathbb{C}^{\times}}$of $e^{\alpha_{i}}, \alpha_{i}$ simple root.
Type $\mathrm{A}_{n}^{(1)}$

$$
\begin{aligned}
& A_{i, a}=Y_{i, a q-1} Y_{i, a q} Y_{i-1, a}^{-1} Y_{i+1, a}^{-1}\left(\ldots \rightsquigarrow e^{\alpha_{i}}=e^{2 w_{i}-w_{i-1}-w_{i+1}}\right) \\
& \left(Y_{0, a}=Y_{n+1, a}:=1, e^{w_{0}}=e^{w_{n+1}}:=1 .\right)
\end{aligned}
$$

q-characters (2)

Set $\mathcal{B}_{\mathbb{C}^{\times}}:=\left\{\prod_{i \in I, a \in \mathbb{C} \times} Y_{i, a}^{m_{i, a}} \mid m_{i, a} \geq 0\right\} \subset \mathcal{Y}_{\mathbb{C}^{\times}}$dominant monomials.

Classification of simple modules [Chari-Pressley]

There is a one-to-one correspondence :

\exists an "affine analogue" $A_{i, a} \in \mathcal{Y}_{\mathbb{C}^{\times}}$of $e^{\alpha_{i}}, \alpha_{i}$ simple root.
Type $\mathrm{B}_{n}^{(1)}$

$$
A_{i, a}= \begin{cases}Y_{i, a q^{-2}} Y_{i, a q^{2}} Y_{i-1, a}^{-1} Y_{i+1, a}^{-1} & \text { if } i \leq n-2 \\ Y_{n-1, a q^{-2}} Y_{n-1, a q^{2}} Y_{n-2, a}^{-1} Y_{n, a q^{-1}}^{-1} Y_{j, a q}^{-1} & \text { if } i=n-1 \\ Y_{n, a q^{-1}} Y_{n, a q} Y_{n-1, a}^{-1} & \text { if } i=n .\end{cases}
$$

$\left(Y_{0, a}:=1\right)$

q-characters (2)

Set $\mathcal{B}_{\mathbb{C} \times}:=\left\{\prod_{i \in I, a \in \mathbb{C} \times} Y_{i, a}^{m_{i, a}} \mid m_{i, a} \geq 0\right\} \subset \mathcal{Y}_{\mathbb{C}} \times$ dominant monomials.

Classification of simple modules [Chari-Pressley]

There is a one-to-one correspondence :

\exists an "affine analogue" $A_{i, a} \in \mathcal{Y}_{\mathbb{C}^{\times}}$of $e^{\alpha_{i}}, \alpha_{i}$ simple root.
Define the partial ordering on the set of Laurent monomials in $\mathcal{Y}_{\mathbb{C}^{\times}}$as

$$
m \geq m^{\prime} \Leftrightarrow m^{-1} m^{\prime} \text { is a product of } A_{i, a}^{-1} \text { 's. }
$$

Theorem (Frenkel-Mukhin)

$$
\chi_{q}(L(m))=m+(\text { sum of terms lower than } m), \forall m \in \mathcal{B}_{\mathbb{C}^{\times}} .
$$

q-characters (3)

$\mathcal{C}_{\mathbf{0}}:=$ the full subcategory of \mathcal{C} such that

Properties

- $\mathcal{C}_{\boldsymbol{\bullet}}$ is a (non-semisimple) abelian \otimes-subcategory.
- $\mathcal{C}=$ $\left(\mathcal{C}_{\bullet}\right)_{a}\left(\left(\mathcal{C}_{\bullet}\right)_{a}\right.$ is obtained from \mathcal{C}_{\bullet} by shift of the spectral parameter by $\left.a\right)$.

From now on, we always work in \mathcal{C}_{\bullet}, and write

$$
Y_{i, r}:=Y_{i, q^{r}} \quad A_{i, r}:=A_{i, q^{r}} \quad \mathcal{B}:=\mathcal{B}_{\mathbb{C} \times} \cap \mathcal{Y} .
$$

Example

- $\mathfrak{g}=\mathfrak{s l}_{2}, I=\{1\}, \chi_{q}\left(L\left(Y_{1, r}\right)\right)=Y_{1, r}+Y_{1, r+2}^{-1}=Y_{1, r}\left(1+A_{1, r+1}^{-1}\right)$.
- $\mathfrak{g}=\mathfrak{s o}_{5}, I=\{1,2\}$,
$\chi_{q}\left(L\left(Y_{1, r}\right)\right)=Y_{1, r}+Y_{2, r+1} Y_{2, r+3} Y_{1, r+4}^{-1}+Y_{2, r+1} Y_{2, r+5}^{-1}+Y_{1, r+2} Y_{2, r+3}^{-1} Y_{2, r+5}^{-1}+Y_{1, r+6}^{-1}$.

q-characters (3)

$\mathcal{C}_{\mathbf{0}}:=$ the full subcategory of \mathcal{C} such that object : V with $\chi_{q}(V) \in \mathbb{Z}\left[Y_{i, q^{r}}^{ \pm 1} \mid i \in I, r \in \mathbb{Z}\right]=: \mathcal{Y}$.

Properties

- $\mathcal{C}_{\boldsymbol{\bullet}}$ is a (non-semisimple) abelian \otimes-subcategory.
- $\mathcal{C}=\bigotimes_{a \in \mathbb{C}^{\times} / q^{\mathbb{Z}}}\left(\mathcal{C}_{\bullet}\right)_{a}\left(\left(\mathcal{C}_{\bullet}\right)_{a}\right.$ is obtained from \mathcal{C}_{\bullet} by shift of the spectral parameter by $\left.a\right)$.

From now on, we always work in \mathcal{C}_{\bullet}, and write

$$
Y_{i, r}:=Y_{i, q^{r}} \quad A_{i, r}:=A_{i, q^{r}} \quad \mathcal{B}:=\mathcal{B}_{\mathbb{C}^{\times} \times} \cap \mathcal{Y} .
$$

For $m=\prod_{i \in I, r \in \mathbb{Z}} Y_{i, r}^{u_{i, r}} \in \mathcal{B}$, a standard module is defined as

$$
M(m):=\overrightarrow{\bigotimes_{r \in \mathbb{Z}}}\left(\bigotimes_{i \in I} L\left(Y_{i, r}\right)^{\otimes u_{i, r}}\right) .
$$

$\rightsquigarrow\{[L(m)] \mid m \in \mathcal{B}\}$ and $\{[M(m)] \mid m \in \mathcal{B}\}$ are \mathbb{Z}-bases of $K\left(\mathcal{C}_{\bullet}\right)$,

Quantum Grothendieck rings (1)

We follow Hernandez's algebraic construction of quantum Grothendieck rings here.

Remark

\exists other (geometric) constructions given by Varagnolo-Vasserot or Nakajima for ADE cases, and all constructions produce equivalent rings in these cases.

First, we prepare a deformation \mathcal{Y}_{t} of the ambient Laurent polynomial ring \mathcal{Y}.
$\rightsquigarrow \mathcal{Y}_{t}$ is a $\mathbb{Z}\left[t^{ \pm 1 / 2}\right]$-algebra such that

- generators: $\tilde{Y}_{i, r}(i \in I, r \in \mathbb{Z})$ and their inverses $\widetilde{Y}_{i, r}^{-1}$
- relations : $\widetilde{Y}_{i, r}$'s mutually t-commute.
e.g. $\mathrm{B}_{2}^{(1)}$-case : $\widetilde{Y}_{1, r+2} \widetilde{Y}_{1, r}=t \widetilde{Y}_{1, r} \widetilde{Y}_{1, r+2}, \widetilde{Y}_{1, r+5} \widetilde{Y}_{2, r}=t^{-1} \widetilde{Y}_{2, r} \widetilde{Y}_{1, r+5}, \ldots$

Quantum Grothendieck rings (2)

There exists a \mathbb{Z}-algebra homomorphism $\mathrm{ev}_{t=1}: \mathcal{Y}_{t} \rightarrow \mathcal{Y}$ given by

$$
t^{1 / 2} \mapsto 1 \quad \tilde{Y}_{i, r} \mapsto Y_{i, r}
$$

This map is called the specialization at $t=1$.
There exists a \mathbb{Z}-algebra anti-involution $\overline{(\cdot)}$ on \mathcal{Y}_{t} given by

$$
t^{1 / 2} \mapsto t^{-1 / 2} \quad \widetilde{Y}_{i, r} \mapsto t^{-1} \tilde{Y}_{i, r}
$$

This map is called the bar-involution.
$\forall m \in \mathcal{Y}$ monomial $\rightsquigarrow \exists!\underline{m} \in \mathcal{Y}_{t}$ monomial (with coefficient in $t^{\mathbb{Z}}$) such that $\underline{\bar{m}}=\underline{m}$. (e.g. $\underline{Y_{i, r}}=t^{-1 / 2} \widetilde{Y}_{i, r}$.) Set $\widetilde{A}_{i, r}:=\underline{A_{i, r}}$.

Quantum Grothendieck rings (3)

For $i \in I$, set

$$
K_{i, t}:=\left\langle\widetilde{Y}_{i, r}\left(1+t \widetilde{A}_{i, r+r_{i}}^{-1}\right), \widetilde{Y}_{j, r}^{ \pm 1} \mid j \in I \backslash\{i\}, r \in \mathbb{Z}\right\rangle_{\mathbb{Z}\left[t^{ \pm 1 / 2}\right]-\text { alg. }} \subset \mathcal{Y}_{t}
$$

Define the quantum Grothendieck ring of \mathcal{C}. as

$$
K_{t}\left(\mathcal{C}_{\bullet}\right):=\bigcap_{i \in I} K_{i, t} .
$$

Remark

Indeed, $K_{i, t}=$ the kernel of a t-analogue of "the screening operator associated to $i \in I^{\prime \prime}$ [Hernandez].
$\rightsquigarrow K_{t}\left(\mathcal{C}_{\bullet}\right)$ is an affine analogue of the space of " W-invariant functions".

Theorem (Varagnolo-Vasserot, Nakajima, Hernandez)

$$
\operatorname{ev}_{t=1}\left(K_{t}\left(\mathcal{C}_{\bullet}\right)\right)=K\left(\mathcal{C}_{\bullet}\right)
$$

(q, t)-characters (1)

\exists a $\mathbb{Z}\left[t^{ \pm 1 / 2}\right]$-basis $\left\{M_{t}(m) \mid m \in \mathcal{B}\right\}$ of $K_{t}\left(\mathcal{C}_{\bullet}\right)$ such that $\operatorname{ev}_{t=1}\left(M_{t}(m)\right)=\chi_{q}(M(m))$ [Nakajima, Hernandez].
$\rightsquigarrow M_{t}(m)$ is called the (q, t)-character of $M(m)$.
All $M_{t}(m)$ can be explicitly calculated once we know $M_{t}\left(Y_{i, 0}\right), i \in I$.

Theorem (Nakajima (ADE cases), Hernandez (arbitrary))

$\exists!\left\{L_{t}(\underline{m}) \mid m \in \mathcal{B}\right\}$ a $\mathbb{Z}\left[t^{ \pm 1 / 2}\right]$-basis of $K_{t}\left(\mathcal{C}_{\bullet}\right)$ such that
(S1) $\overline{L_{t}(m)}=L_{t}(m)$, and
(S2) $M_{t}(m)=L_{t}(m)+\sum_{m^{\prime}<m} P_{m, m^{\prime}}(t) L_{t}\left(m^{\prime}\right)$ with $P_{m, m^{\prime}}(t) \in t^{-1} \mathbb{Z}\left[t^{-1}\right]$.

The element $L_{t}(m)$ is called the (q, t)-character of $L(m)$.

(q, t)-characters (2)

$$
\text { (S1) } \overline{L_{t}(m)}=L_{t}(m)(\mathrm{S} 2) M_{t}(m)=L_{t}(m)+\sum_{m^{\prime}<m} P_{m, m^{\prime}}(t) L_{t}\left(m^{\prime}\right), P_{m, m^{\prime}}(t) \in t^{-1} \mathbb{Z}\left[t^{-1}\right]
$$

Remark

The characterization properties (S1) and (S2) provide an inductive algorithm for computing $P_{m, m^{\prime}}(t)$'s, called Kazhdan-Lusztig algorithm.

When \mathfrak{g} is of ADE type,

$$
\mathrm{ev}_{t=1}\left(L_{t}(m)\right)=\chi_{q}(L(m)) \text { [Nakajima]. }
$$

Its proof is based on his geometric construction using quiver varieties, and it is valid only in ADE case. Moreover, in this case,

$$
P_{m, m^{\prime}}(t) \in t^{-1} \mathbb{Z}_{\geq 0}\left[t^{-1}\right] \text { (positivity). }
$$

(q, t)-characters (2)

$$
\text { (S1) } \overline{L_{t}(m)}=L_{t}(m)(\mathrm{S} 2) M_{t}(m)=L_{t}(m)+\sum_{m^{\prime}<m} P_{m, m^{\prime}}(t) L_{t}\left(m^{\prime}\right), P_{m, m^{\prime}}(t) \in t^{-1} \mathbb{Z}\left[t^{-1}\right]
$$

Remark

The characterization properties (S1) and (S2) provide an inductive algorithm for computing $P_{m, m^{\prime}}(t)$'s, called Kazhdan-Lusztig algorithm.

Conjecture (Hernandez)

For arbitrary cases, we also have
(1) $\forall m \in \mathcal{B}, \operatorname{ev}_{t=1}\left(L_{t}(m)\right)=\chi_{q}(L(m))$. (2) $P_{m, m^{\prime}}(t) \in t^{-1} \mathbb{Z}_{\geq 0}\left[t^{-1}\right]$.

If Conjecture (1) holds (in particular, in ADE cases), we have

$$
[M(m)]=[L(m)]+\sum_{m^{\prime}<m} P_{m, m^{\prime}}(1)\left[L\left(m^{\prime}\right)\right] \text { in } K\left(\mathcal{C}_{\bullet}\right) .
$$

Quantized coordinate algebra of type A_{N}

Let \mathcal{U}_{v}^{-}be the negative half of the QEA of type A_{N} over $\mathbb{Q}\left(v^{1 / 2}\right)$.
$\left(:=\right.$ the $\mathbb{Q}\left(v^{1 / 2}\right)$-algebra with generators $\left\{f_{i}\right\}_{i=1, \ldots, \ldots,}$, relations $\left\{\begin{array}{ll}f_{2}^{2} f_{j}-\left(v+v^{-1}\right) f_{i} f_{j} f_{i}+f_{j} f_{i}^{2}=0 & \text { if }|i-j|=1 \\ f_{i} f_{j}-f_{j} f_{i}=0 & \text { if }|i-j|>1 .\end{array}\right)$
$\rightsquigarrow \mathcal{A}_{v}\left[N_{-}^{\mathrm{A}_{N}}\right] \underset{\mathbb{Z}\left[v^{ \pm 1 / 2}\right] \text {-subalg }}{\subset} \mathcal{U}_{v}^{-}$the quantized coordinate algebra.

Property

$\mathbb{Q}\left(v^{ \pm 1 / 2}\right) \otimes_{\mathbb{Z}\left[v^{ \pm 1 / 2}\right]} \mathcal{A}_{v}\left[N_{-}^{\mathrm{A}_{N}}\right] \simeq \mathcal{U}_{v}^{-} \quad \mathbb{C} \otimes_{\mathbb{Z}\left[v^{ \pm 1 / 2}\right]} \mathcal{A}_{v}\left[N_{-}^{\mathrm{A}_{N}}\right] \simeq \mathbb{C}\left[N_{-}^{\mathrm{A}_{N}}\right]$. Here $N_{-}^{\mathrm{A}_{N}}:=\{(N+1) \times(N+1)$ unipotent lower triangular matrices $\}$.

- $\exists \mathrm{ev}_{v=1}: \mathcal{A}_{v}\left[N_{-}^{\mathrm{A}_{N}}\right] \rightarrow \mathbb{C}\left[N_{-}^{\mathrm{A}_{N}}\right]$ a \mathbb{Z}-algebra homomorphism, called the specialization at $v=1$.
- \exists an \mathbb{Z}-algebra anti-involution σ^{\prime} on $\mathcal{A}_{v}\left[N_{-}^{\mathrm{A}_{N}}\right]$, called the (twisted) dual bar involution (e.g. $v^{1 / 2} \mapsto v^{-1 / 2}$).
(:= the restriction of the \mathbb{Z}-algebra anti-involution on \mathcal{U}_{v}^{-}given by $v^{1 / 2} \mapsto v^{-1 / 2}, f_{i} \mapsto-f_{i}$.)

Dual canonical bases

Let $\boldsymbol{i}=\left(i_{1}, i_{2}, \ldots, i_{\ell}\right)$ be a reduced word of the longest element w_{0} of the Weyl group $W^{\mathrm{A}_{N}} \simeq \mathfrak{S}_{N+1}$.
(e.g. if $N=2$, then $\boldsymbol{i}=(1,2,1)$ or $(2,1,2)$.)

Dual canonical bases

Let $\boldsymbol{i}=\left(i_{1}, i_{2}, \ldots, i_{\ell}\right)$ be a reduced word of the longest element w_{0} of the Weyl group $W^{\mathrm{A}_{N}} \simeq \mathfrak{S}_{N+1}$. Let Δ_{+}be the set of positive roots of type A_{N}.
$\rightsquigarrow \exists\left\{\widetilde{F^{\text {up }}}(\boldsymbol{c}, \boldsymbol{i}) \mid \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_{+}}\right\}$a $\mathbb{Z}\left[v^{ \pm 1 / 2}\right]$-basis of $\mathcal{A}_{v}\left[N_{-}^{\mathrm{A}_{N}}\right]$ depending on \boldsymbol{i}, which is an analogue of the (dual) PBW-basis associated to \boldsymbol{i} [Lusztig].

Theorem (Lusztig, Saito, Kimura)

- $\exists!\widetilde{\mathbf{B}}^{\text {up }}:=\left\{\widetilde{G^{\text {up }}}(\boldsymbol{c}, \boldsymbol{i}) \mid \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_{+}}\right\}$a $\mathbb{Z}\left[v^{ \pm 1 / 2}\right]$-basis of $\mathcal{A}_{v}\left[N_{-}^{\mathrm{A}_{N}}\right]$ such that
(B1) $\sigma^{\prime}\left(\widetilde{G^{\text {up }}}(\boldsymbol{c}, \boldsymbol{i})\right)=\widetilde{G^{\text {up }}}(\boldsymbol{c}, \boldsymbol{i})$, and
(B2) $\widetilde{F^{\text {up }}}(\boldsymbol{c}, \boldsymbol{i})=\widetilde{G^{\text {up }}}(\boldsymbol{c}, \boldsymbol{i})+\sum_{\boldsymbol{c}^{\prime}} p_{\boldsymbol{c}, \boldsymbol{c}^{\prime}}(v) \widetilde{G^{\text {up }}}\left(\boldsymbol{c}^{\prime}, \boldsymbol{i}\right)$ with

$$
p_{c, c^{\prime}}(v) \in v \mathbb{Z}[v] .
$$

- $\widetilde{\mathbf{B}}^{\text {up }}$ does not depend on the choice of \boldsymbol{i}.

The basis $\widetilde{\mathbf{B}}^{\text {up }}$ is called the (normalized) dual canonical basis.

Positivities

$$
(\mathrm{B} 1) \sigma^{\prime}\left(\widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i})\right)=\widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i})(\mathrm{B} 2) \widetilde{F^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i})=\widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i})+\sum_{\boldsymbol{c}^{\prime}} p_{\boldsymbol{c}, \boldsymbol{c}^{\prime}}(v) \widetilde{G^{\mathrm{up}}}\left(\boldsymbol{c}^{\prime}, \boldsymbol{i}\right), p_{\boldsymbol{c}, \boldsymbol{c}^{\prime}}(v) \in v \mathbb{Z}[v]
$$

Theorem (Lusztig (i "adapted"), Kato, McNamara (arbitrary), (O. arbitrary))
$p_{c, c^{\prime}}(v) \in \mathbb{Z}_{\geq 0}[v]$.

Theorem (Lusztig)

For $\boldsymbol{c}_{1}, \boldsymbol{c}_{2} \in \mathbb{Z}_{\geq 0}^{\Delta_{+}}$, write

$$
\widetilde{G^{\mathrm{up}}}\left(\boldsymbol{c}_{1}, \boldsymbol{i}\right) \widetilde{G^{\mathrm{up}}}\left(\boldsymbol{c}_{2}, \boldsymbol{i}\right)=\sum_{\boldsymbol{c}} c_{\boldsymbol{c}_{1}, \boldsymbol{c}_{2}}^{\boldsymbol{c}} \widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i})
$$

Then $c_{\boldsymbol{c}_{1}, \boldsymbol{c}_{2}}^{\boldsymbol{c}} \in \mathbb{Z}_{\geq 0}\left[v^{ \pm 1 / 2}\right]$.

Hernandez-Leclerc isomorphisms in type $\mathrm{A}_{N}^{(1)}$

Assume that $\mathcal{U}_{q}(\mathcal{L} \mathfrak{g})$ is of type $\mathrm{A}_{N}^{(1)}(I=\{1, \ldots, N\})$. Define $J_{\mathcal{Q}^{\prime}, A_{N}^{(1)}}$ by

$$
\begin{aligned}
& J_{\mathcal{Q}^{\prime}, A_{N}^{(1)}}:=\{(\imath,-\imath+1-2 k) \in I \times \mathbb{Z} \mid k=0,1, \ldots, 2 n-\imath-1 \text { and } \imath \in I\} \text {. } \\
& N=4 \\
& N=5
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{Z}
\end{aligned}
$$

Hernandez-Leclerc isomorphisms in type $\mathrm{A}_{N}^{(1)}$

Assume that $\mathcal{U}_{q}(\mathcal{L} \mathfrak{g})$ is of type $\mathrm{A}_{N}^{(1)}(I=\{1, \ldots, N\})$. Define $J_{\mathcal{Q}^{\prime}, A_{N}^{(1)}}$ by
$J_{\mathcal{Q}^{\prime}, A_{N}^{(1)}}:=\{(\imath,-\imath+1-2 k) \in I \times \mathbb{Z} \mid k=0,1, \ldots, 2 n-\imath-1$ and $\imath \in I\}$.
Set

$$
\mathcal{B}_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}:=\left\{\prod_{(\imath, r)} Y_{\imath, r}^{u_{2, r}} \in \mathcal{B} \mid u_{\imath, r} \neq 0 \text { only if }(\imath, r) \in J_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}\right\},
$$

$\mathcal{C}_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}:=$ the full subcategory of \mathcal{C}. such that

$$
\underline{\text { object }}: V \text { with }[V] \in \sum_{m \in \mathcal{B}_{\mathcal{Q}_{,}, A}^{(0)}} \mathbb{Z}[L(m)] \text {. }
$$

Lemma (Hernandez-Leclerc)

$\mathcal{C}_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}$ is an abelian \otimes-subcategory.

Hernandez-Leclerc isomorphisms in type $\mathrm{A}_{N}^{(1)}(2)$

Set

$$
K_{t}\left(\mathcal{C}_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}\right):=\sum_{m \in \mathcal{B}_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] M_{t}(m)=\sum_{m \in \mathcal{B}_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] L_{t}(m)
$$

Lemma
$K_{t}\left(\mathcal{C}_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}\right)$ is a $\mathbb{Z}\left[t^{ \pm 1 / 2}\right]$-subalgebra of $K_{t}\left(\mathcal{C}_{\bullet}\right)$.
$\rightsquigarrow K_{t}\left(\mathcal{C}_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}\right)$ is called the quantum Grothendieck ring of $\mathcal{C}_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}$.

Hernandez-Leclerc isomorphisms in type $\mathrm{A}_{N}^{(1)}$

Set

$$
\begin{aligned}
& K_{t}\left(\mathcal{C}_{\mathcal{Q}^{\prime}, A_{N}^{(1)}}\right):=\sum_{m \in \mathcal{B}_{\mathcal{Q}^{\prime}, A_{v}^{(1)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] M_{t}(m)=\sum_{m \in \mathcal{B}_{\mathcal{Q}^{\prime}, A_{v}^{(i)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] L_{t}(m) . \\
& \text { rite }
\end{aligned}
$$

$J_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}=\left\{\left(\imath_{s}, r_{s}\right) \mid s=1, \ldots, \ell(=N(N+1) / 2)\right\}$ with $r_{1} \geq \cdots \geq r_{\ell}$. $\rightsquigarrow \boldsymbol{i}_{\mathcal{Q}^{\prime}}:=\left(\imath_{1}, \imath_{2}, \ldots, \imath_{\ell}\right)$ is a reduced word of $w_{0} \in W^{\boldsymbol{A}_{N}}$.

Remark

The reduced word $\boldsymbol{i}_{\mathcal{Q}^{\prime}}$ depends on the choice of the total ordering on $J_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}$. However, its "commutation class" is uniquely determined. The following results does not depend on this choice. This $\boldsymbol{i}_{\mathcal{Q}^{\prime}}$ is "adapted to $\mathcal{Q}^{\prime \prime}$.

Hernandez-Leclerc isomorphisms in type $\mathrm{A}_{N}^{(1)}(2)$

Set

$$
K_{t}\left(\mathcal{C}_{\mathcal{Q}^{\prime}, A_{N}^{(1)}}\right):=\sum_{m \in \mathcal{B}_{\mathcal{Q}^{\prime}, A_{\nu}^{(1)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] M_{t}(m)=\sum_{m \in \mathcal{B}_{\mathcal{Q}^{\prime}, A_{\nu}^{(i)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] L_{t}(m) .
$$

$$
J_{\mathcal{Q}^{\prime}, A_{N}^{(1)}}=\left\{\left(\imath_{s}, r_{s}\right) \mid s=1, \ldots, \ell(=N(N+1) / 2)\right\} \text { with } r_{1} \geq \cdots \geq r_{\ell} .
$$

$\rightsquigarrow \boldsymbol{i}_{\mathcal{Q}^{\prime}}:=\left(\imath_{1}, \imath_{2}, \ldots, \imath_{\ell}\right)$ is a reduced word of $w_{0} \in W^{\boldsymbol{A}_{N}}$.
In the following example, $\boldsymbol{i}_{\mathcal{Q}^{\prime}}=(1,2,1,3,2,4,1,3,2,1)$ etc.

Hernandez-Leclerc isomorphisms in type $\mathrm{A}_{N}^{(1)}$ (2)

$$
K_{t}\left(\mathcal{C}_{\mathcal{Q}^{\prime}, A_{N}^{(1)}}\right):=\sum_{m \in \mathcal{B}_{\mathcal{Q}^{\prime}, A_{N}^{(i)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] M_{t}(m)=\sum_{m \in \mathcal{B}_{\mathcal{Q}^{\prime}, A_{N}^{(i)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] L_{t}(m) .
$$

$$
J_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}=\left\{\left(\imath_{s}, r_{s}\right) \mid s=1, \ldots, \ell(=N(N+1) / 2)\right\} \text { with } r_{1} \geq \cdots \geq r_{\ell} \text {. }
$$

$\rightsquigarrow \boldsymbol{i}_{\mathcal{Q}^{\prime}}:=\left(\imath_{1}, \imath_{2}, \ldots, \imath_{\ell}\right)$ is a reduced word of $w_{0} \in W^{\mathrm{A}_{N}}$.

Theorem (Hernandez-Leclerc)

There exists a \mathbb{Z}-algebra isomorphism
given by

$$
\Phi_{\mathrm{A}}: \mathcal{A}_{v}\left[N_{-}^{\mathrm{A}_{N}}\right] \xrightarrow{\sim} K_{t}\left(\mathcal{C}_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}\right)
$$

$$
v^{ \pm 1 / 2} \mapsto t^{\mp 1 / 2} \quad \widetilde{F^{\mathrm{up}}}\left(\boldsymbol{c}, \boldsymbol{i}_{\mathcal{Q}^{\prime}}\right) \mapsto M_{t}(m(\boldsymbol{c})) \forall \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_{+}}
$$

here $m(\boldsymbol{c})=\prod_{k=1}^{\ell} Y_{\imath_{k}, r_{k}}^{\boldsymbol{c}\left(s_{\imath_{1}} \cdots s_{\imath_{k-1}} \alpha_{\nu_{k}}\right)}$. Moreover,

$$
\Phi_{\mathrm{A}}\left(\widetilde{G^{\mathrm{up}}}\left(\boldsymbol{c}, \boldsymbol{i}_{\mathcal{Q}^{\prime}}\right)\right)=L_{t}(m(\boldsymbol{c})) . \forall \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_{+}} .
$$

Our isomorphisms (1)

Assume that $\mathcal{U}_{q}(\mathcal{L} \mathfrak{g})$ is of type $\mathrm{B}_{n}^{(1)}(I=\{1, \ldots, n\})$.
Let $\widetilde{I}:=\{1, \ldots, 2 n-1\}$. Define $\widetilde{J}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$ by

$$
\begin{aligned}
& \widetilde{J}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}:=\{(\imath,-\imath+2-2 k) \mid k=0, \ldots, 2 n-1-\imath \text { and } \imath=n+1, \ldots, 2 n-1\} \\
& \cup\left\{\left.\left(n,-n+\frac{3}{2}-k\right) \right\rvert\, k=0, \ldots, 2 n-2\right\} \\
& \cup\{(\imath,-\imath+1-2 k) \mid k=0, \ldots, 2 n-2-\imath \text { and } \imath=1, \ldots, n-1\} \text {. } \\
& \underline{n=3}
\end{aligned}
$$

Our isomorphisms (1)

Assume that $\mathcal{U}_{q}(\mathcal{L g})$ is of type $\mathrm{B}_{n}^{(1)}(I=\{1, \ldots, n\})$.
Let $\widetilde{I}:=\{1, \ldots, 2 n-1\}$. Define $\widetilde{J}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$ by

$$
\begin{aligned}
\widetilde{J}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}:= & \{(\imath,-\imath+2-2 k) \mid k=0, \ldots, 2 n-1-\imath \text { and } \imath=n+1, \ldots, 2 n-1\} \\
& \cup\left\{\left.\left(n,-n+\frac{3}{2}-k\right) \right\rvert\, k=0, \ldots, 2 n-2\right\} \\
& \cup\{(\imath,-\imath+1-2 k) \mid k=0, \ldots, 2 n-2-\imath \text { and } \imath=1, \ldots, n-1\} .
\end{aligned}
$$

Our isomorphisms (1)

Assume that $\mathcal{U}_{q}(\mathcal{L} \mathfrak{g})$ is of type $\mathrm{B}_{n}^{(1)}(I=\{1, \ldots, n\})$.
Let $\widetilde{I}:=\{1, \ldots, 2 n-1\}$. Define $\widetilde{J}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$.
Consider the map $\tilde{I} \rightarrow I, \imath \mapsto \bar{\imath}:=\left\{\begin{array}{ll}\imath & \text { if } \imath \leq n, \\ 2 n-\imath & \text { if } \imath>n .\end{array}\right.$ "folding"
Set
$\mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}:=\left\{\prod_{(i, r)} Y_{i, r}^{u_{i, r}} \in \mathcal{B} \left\lvert\, \begin{array}{l}u_{i, r} \neq 0 \text { only if }(i, r)=(\bar{\imath}, 2 s) \\ \text { for some }(\imath, s) \in \widetilde{J}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\end{array}\right.\right\}$,
$\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}:=$ the full subcategory of \mathcal{C}. such that

$$
\underline{\text { object }}: V \text { with }[V] \in \sum_{m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}} \mathbb{Z}[L(m)]
$$

Lemma (Oh-Suh, Hernandez-O.)

$\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$ is an abelian \otimes-subcategory.

Our isomorphisms (1)

Assume that $\mathcal{U}_{q}(\mathcal{L} \mathfrak{g})$ is of type $\mathrm{B}_{n}^{(1)}(I=\{1, \ldots, n\})$. Let $\widetilde{I}:=\{1, \ldots, 2 n-1\}$.
Consider the map $\tilde{I} \rightarrow I, \imath \mapsto \bar{\imath}:=\left\{\begin{array}{ll}\imath & \text { if } \imath \leq n, \\ 2 n-\imath & \text { if } \imath>n .\end{array}\right.$ "folding"
Set

$$
\mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}:=\left\{\prod_{(i, r)} Y_{i, r}^{u_{i, r}} \in \mathcal{B} \left\lvert\, \begin{array}{l}
u_{i, r} \neq 0 \text { only if }(i, r)=(\bar{\imath}, 2 s) \\
\text { for some }(2, s) \in \widetilde{J}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}
\end{array}\right.\right\} .
$$

Our isomorphisms (2)

Set

$$
K_{t}\left(\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right):=\sum_{m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{3}^{(i)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] M_{t}(m)=\sum_{m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] L_{t}(m) .
$$

Lemma

$K_{t}\left(\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right)$ is a $\mathbb{Z}\left[t^{ \pm 1 / 2}\right]$-subalgebra of $K_{t}\left(\mathcal{C}_{\bullet}\right)$.
$\rightsquigarrow K_{t}\left(\mathcal{C}_{\left.\mathcal{Q}, \mathrm{B}_{n}^{(1)}\right)}\right)$ is called the quantum Grothendieck ring of $\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$.

Our isomorphisms (2)

Set

$$
K_{t}\left(\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right):=\sum_{m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{\mathrm{B}}^{(0)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] M_{t}(m)=\sum_{m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{B}^{(0)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] L_{t}(m) .
$$

$\widetilde{J}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}=\left\{\left(\imath_{s}, r_{s}\right) \mid s=1, \ldots, \ell(=2 n(2 n-1) / 2)\right\}$ with $r_{1} \geq \cdots \geq r_{\ell}$. $\rightsquigarrow \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}}:=\left(\imath_{1}, \imath_{2}, \ldots, \imath_{\ell}\right)$ is a reduced word of $w_{0} \in W^{\mathrm{A}_{2 n-1}}$.

Remark

The reduced word $i_{\mathcal{Q}}^{\text {tw }}$ depends on the choice of the total ordering on $J_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$. However, its "commutation class" is uniquely determined.
The following results does not depend on this choice.
This $\boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}}$ is always "non-adapted".

Our isomorphisms (2)

Set

$$
K_{t}\left(\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right):=\sum_{m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{\mathrm{B}}^{(i)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] M_{t}(m)=\sum_{m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] L_{t}(m) .
$$

$\widetilde{J}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}=\left\{\left(\imath_{s}, r_{s}\right) \mid s=1, \ldots, \ell(=2 n(2 n-1) / 2)\right\}$ with $r_{1} \geq \cdots \geq r_{\ell}$.
$\rightsquigarrow \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}}:=\left(\imath_{1}, \imath_{2}, \ldots, \imath_{\ell}\right)$ is a reduced word of $w_{0} \in W^{\mathrm{A}_{2 n-1}}$.
In the following example, $\boldsymbol{i}_{\mathcal{Q}}^{\text {tw }}=(1,2,3,1,4,3,2,5,3,1,4,3,2,3,1)$ etc.

Our isomorphisms (2)

$$
K_{t}\left(\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right):=\sum_{m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{3}^{(i)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] M_{t}(m)=\sum_{m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}} \mathbb{Z}\left[t^{ \pm 1 / 2}\right] L_{t}(m) .
$$

$\widetilde{J}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}=\left\{\left(\imath_{s}, r_{s}\right) \mid s=1, \ldots, \ell(=2 n(2 n-1) / 2)\right\}$ with $r_{1} \geq \cdots \geq r_{\ell}$. $\rightsquigarrow \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}}:=\left(\imath_{1}, \imath_{2}, \ldots, \imath_{\ell}\right)$ is a reduced word of $w_{0} \in W^{\mathrm{A}_{2 n-1}}$.

Theorem (Hernandez-O.)

There exists a \mathbb{Z}-algebra isomorphism

$$
\Phi_{\mathrm{B}}: \mathcal{A}_{v}\left[N_{-}^{\mathrm{A}_{2 n-1}}\right] \xrightarrow{\sim} K_{t}\left(\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right)
$$

given by

$$
v^{ \pm 1 / 2} \mapsto t^{\mp 1 / 2} \quad \widetilde{F^{\mathrm{up}}}\left(\boldsymbol{c}, \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}}\right) \mapsto M_{t}\left(m^{\prime}(\boldsymbol{c})\right) \forall \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_{+}}
$$

here $m^{\prime}(\boldsymbol{c})=\prod_{k=1}^{\ell} Y_{\imath_{k}, r_{k}}^{\boldsymbol{c}\left(s_{\imath_{1}} \cdots s_{\imath_{k-1}} \alpha_{\imath_{k}}\right)}$. Moreover,

$$
\Phi_{\mathrm{B}}\left(\widetilde{G^{\mathrm{up}}}\left(\boldsymbol{c}, \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}}\right)\right)=L_{t}\left(m^{\prime}(\boldsymbol{c})\right) . \forall \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_{+}} .
$$

Positivities in $\mathcal{C}_{\mathcal{Q}, B_{n}^{(1)}}$

By our theorem, the positivities of the dual canonical bases $\widetilde{\mathbf{B}}^{\text {up }}$ can be transported to those of (q, t)-characters.
Corollary (Positivity of Kazhdan-Lusztig type polynomials)
For $m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$, write

$$
M_{t}(m)=\sum_{m^{\prime} \in \mathcal{B}_{Q, \mathrm{~B}_{2}^{(i)}}} P_{m, m^{\prime}}(t) L_{t}\left(m^{\prime}\right) .
$$

as before. Then $P_{m, m^{\prime}}(t) \in \mathbb{Z}_{\geq 0}\left[t^{-1}\right]$.
This is the affirmative answer to Conjecture (2) for $\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$.

Corollary (Positivity of structure constants)

For $m_{1}, m_{2} \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$, write

$$
L_{t}\left(m_{1}\right) L_{t}\left(m_{2}\right)=\sum_{\in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}} c_{m_{1}, m_{2}}^{m} L_{t}(m) ~ . ~}
$$

Then we have $c_{m_{1}, m_{2}}^{m} \in \mathbb{Z}_{\geq 0}\left[t^{ \pm 1 / 2}\right]$.

Comparison with Kashiwara-Oh

The following remarkable theorem is recently proved by means of the celebrated generalized quantum affine Schur-Weyl dualities, which is developed by Kang, Kashiwara, Kim and Oh :

Theorem (Kashiwara-Oh '17)

There exists a \mathbb{Z}-algebra isomorphism

$$
[\mathscr{F}]: \mathrm{ev}_{v=1}\left(\mathcal{A}_{v}\left[N_{-}^{\mathrm{A}_{2 n-1}}\right]\right) \xrightarrow{\sim} K\left(\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right)
$$

which maps the dual canonical basis $\operatorname{ev}_{v=1}\left(\widetilde{\mathbf{B}}^{\mathrm{up}}\right)$ specialized at $v=1$ to the set of classes of simple modules $\left\{[L(m)] \mid m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right\}$.

Theorem (Hernandez-O.)

$$
\left.\Phi_{\mathrm{B}}\right|_{v=t=1}=[\mathscr{F}] .
$$

Comparison with Kashiwara-Oh

Theorem (Hernandez-O.)

$$
\left.\Phi_{\mathrm{B}}\right|_{v=t=1}=[\mathscr{F}] .
$$

Remark

Our construction of Φ_{B} does not imply Kashiwara-Oh's theorem because, a priori,

- $\left.\Phi_{\mathrm{B}}\right|_{v=t=1}$ maps $\mathrm{ev}_{v=1}\left(\widetilde{\mathbf{B}}^{\text {up }}\right)$ to $\left\{\operatorname{ev}_{v=1}\left(L_{t}(m)\right) \mid m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right\}$, but
- $[\mathscr{F}] \operatorname{maps} \operatorname{ev}_{v=1}\left(\widetilde{\mathbf{B}}^{\text {up }}\right)$ to $\left\{[L(m)] \mid m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right\}$,
(The coincidence of these images is nothing but Hernandez's conjecture (1) !) Hence our result and Kashiwara-Oh's result are independent.
Our comparison theorem above is proved by looking at the images of dual PBW-bases.

Comparison with Kashiwara-Oh

Theorem (Kashiwara-Oh '17)

There exists a \mathbb{Z}-algebra isomorphism

$$
[\mathscr{F}]: \operatorname{ev}_{v=1}\left(\mathcal{A}_{v}\left[N_{-}^{\mathrm{A}_{2 n-1}}\right]\right) \xrightarrow{\sim} K\left(\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right)
$$

which maps the dual canonical basis $\operatorname{ev}_{v=1}\left(\widetilde{\mathbf{B}}^{\mathrm{up}}\right)$ specialized at $v=1$ to the set of classes of simple modules $\left\{[L(m)] \mid m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right\}$.

Theorem (Hernandez-O.)

$$
\left.\Phi_{\mathrm{B}}\right|_{v=t=1}=[\mathscr{F}] .
$$

Corollary

$\chi_{q}(L(m))=\operatorname{ev}_{t=1}\left(L_{t}(m)\right), \forall m \in \mathcal{B}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$.
This is the affirmative answer to Conjecture (1) for $\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$.

Comments on further results and proofs (1)

- There are several variants in the choices of the subcategories $\mathcal{C}_{\mathcal{Q}^{\prime}, \mathrm{A}_{N}^{(1)}}$ and $\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$. However the parallel results hold. (The choice in this talk is the case that \mathcal{Q}^{\prime} and \mathcal{Q} are "equioriented".)
- By combining our Φ_{B} with Φ_{A} for $\mathrm{A}_{2 n-1}^{(1)}$, we can obtain a $\mathbb{Z}\left[v^{ \pm 1 / 2}\right]$-algebra isomorphism $K_{t}\left(\mathcal{C}_{\mathcal{Q}^{\prime}, \mathrm{A}_{2 n-1}^{(1)}}\right) \simeq K_{t}\left(\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right)$.
This isomorphism preserves the set of (q, t)-characters of simple modules. (It does not preserve the set of (q, t)-characters of standard modules.)
For the choices of $\mathcal{C}_{\mathcal{Q}^{\prime}, A_{2 n-1}^{(1)}}$ and $\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}$ in this talk, we know explicit correspondence of simple modules in terms of highest monomials.

T-system

For $i \in I, r \in \mathbb{Z}, k \in \mathbb{Z}_{\geq 0}$, set $m_{k, r}^{(i)}:=\prod_{s=1}^{k} Y_{i, r+2 r_{i}(s-1)} .\left(m_{1, r}^{(i)}=Y_{i, r}\right)$

The quantum T-system of type B [Hernandez-O.]

$\exists \alpha, \beta \in \mathbb{Z}$ such that the following identity holds in $K_{t}\left(\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}}\right)$:

$$
L_{t}\left(m_{k, r}^{(i)}\right) L_{t}\left(m_{k, r+2 r_{i}}^{(i)}\right)=t^{\alpha / 2} L_{t}\left(m_{k+1, r}^{(i)}\right) L_{t}\left(m_{k-1, r+2 r_{i}}^{(i)}\right)+t^{\beta / 2} S_{k, r, t}^{(i)}
$$

Here, $\quad S_{k, r, t}^{(i)}=\left\{\begin{array}{l}L_{t}\left(m_{k, r+2}^{(i-1)}\right) L_{t}\left(m_{k, r+2}^{(i+1)}\right) \text { if } i \leq n-2, \\ L_{t}\left(m_{k, r+2}^{(n-2)}\right) L_{t}\left(m_{2 k, r+1}^{(n)}\right) \text { if } i=n-1, \\ L_{t}\left(m_{s, r+1}^{(n-1)}\right) L_{t}\left(m_{s, r+3}^{(n-1)}\right) \text { if } i=n \text { and } k=2 s \text { is even, } \\ L_{t}\left(m_{s+1, r+1}^{(n-1)}\right) L_{t}\left(m_{s, r+3}^{(n-1)}\right) \text { if } i=n \text { and } k=2 s+1 \text { is odd. }\end{array} \quad\left(L_{t}\left(m_{*, *}^{(0)}\right):=1\right)\right.$.

Example ($\mathrm{B}_{3}^{(1)}$-case)

- $L_{t}\left(m_{2, r}^{(1)}\right) L_{t}\left(m_{2, r+4}^{(1)}\right)=t L_{t}\left(m_{3, r}^{(1)}\right) L_{t}\left(m_{1, r+4}^{(1)}\right)+L_{t}\left(m_{2, r+2}^{(2)}\right)$.
- $L_{t}\left(m_{3, r}^{(3)}\right) L_{t}\left(m_{3, r+2}^{(3)}\right)=t^{1 / 2} L_{t}\left(m_{4, r}^{(3)}\right) L_{t}\left(m_{2, r+2}^{(3)}\right)+t^{-1 / 2} L_{t}\left(m_{2, r+1}^{(2)}\right) L_{t}\left(m_{1, r+3}^{(2)}\right)$.

Comments on further results and proofs (2)

Sketch of the proof of the existence of Φ_{B}
0) We have

- $K_{t}\left(\mathcal{C}_{\mathcal{Q}, \mathrm{B}_{n}^{(1)}} \stackrel{\text { "truncate" }}{\longrightarrow}\right.$ the quantum torus of finitely many variables.
- $\mathcal{A}_{v}\left[N_{-}^{\mathrm{A}_{2 n-1}}\right] \hookrightarrow$ the quantum torus arising from the "quantum initial seed" associated with $\boldsymbol{i}_{\mathcal{Q}}^{\text {tw }}$ (\Leftarrow quantum cluster algebra).

1) Prove the isomorphism between ambient tori in Step 0. (Here we also use the cluster algebraic observation " $A_{i, r}$'s are \hat{Y}-variables")
2) Show the coincidence between quantum T-system and quantum determinantal ientities (\Leftarrow mutation sequence. Every algebra generator appears as a cluster variable in this sequence).

Reference : arXiv:1803.06754v1

