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Introduction

Aims of this talk:

Establish a quantum analogue of “the Chamber Ansatz”.

Classical (¢ = 1) Factorization problem and the Chamber Ansatz:
Consider the following map:

Yi: (CX)K — NEU

Y W
(t1,...,t)) —> exp(t1F},) - -exp(teF;,).

Here 2 a reduced word of w, and N* := N_ N B,wB, unipotent
cell. (In fact, This gives a birational isomorphism from C* to a
Schubert cell X (w).)

Problem

Describe the inverse birational isomorphism y,; L
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Introduction (2)

Berenstein-Zelevinsky (1997) gives formulae for y; ', called “the
Chamber Ansatz”. The key tool is a twist map 7} : C[N"] — C[N™].
By the way, there are known g-analogues of C[N™] and y;. The
following are the main result.

Theorem (Kimura-O)

There exists ‘q-analogue” of the twist map n;,. Moreover quantum
twist maps preserve dual canonical bases.

Theorem (O)

The Chamber Ansatz formulae also hold in quantum settings by
using quantum twist maps above.
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The Chamber Ansatz

Let

@ g a semisimple Lie algebra over C, g =n~ & h @& n' triangular
decomposition (fixed),

o {E;,F;,,H; |ie€ I} Chevalley generators of g, A = (a;;); jer the
Cartan matrix (i.e. [H;, E;] = a;;E;,...),

@ G connected simply connected algebraic group (over C) with
LieG =g,

e N_, H, N, closed subgroups of GG such that Lie N_ =n"—,
Lie H = b, Lie N, =nT,

e B_:=N_H, B, := HN, Borel subgroups,

o x;(t) = exp(tE;), y;(t) = exp(tF;) 1-parameter subgroups
corresponding to F;, Fj;,

o W := Ng(H)/H Weyl group, e its unit, {s; | i € I} simple
reflections, ¢(w) the length of w € W,

Hironori Oya (The University of Tokyo) The Quantum Chamber Ansatz Oberseminar Algebra 4 /24



The Chamber Ansatz

Let g, G, Ny, H, By, x;(t), y;(t), W standard notation.

o I(w) :={(i1, .- i) € "™ |w=ys; - Siy } the set of
reduced words of w € W,

o 5 =z, (—D)y;(Daxy(—1) (t€I), w:=5; -5,
((i1,...,10) € I(w)),
In fact, @ does not depend on the choice of (iy,..., %) € I(w),

e w; € Hom,g grp.(H,C*) fundamental weight corresponding to
iel,

e Go:=N_HN,, g=[g]-19]olg]+ (9 € Go) the corresponding
decomposition,
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The Chamber Ansatz

Let g, G, Ny, H, By, x;(t), vi(t), W, I(w), W, w; standard
notation. Set Gy := N_HN,, g = [9]_[9]olg]+ (g € Go).

Definition (Generalized minors)

For i € I, denote by A, -, the regular function on G’ whose
restriction to the open dense set GGy is given by

Awi@'i (g) = wl([g]ﬂ)

For wy,wy € W, define Ay, w, wyw; € C[G] by

AN p— (g) = A, w; (w_l—lgw_2)

These elements are called generalized minors.
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The Chamber Ansatz (2)

For w € W, set N* := N_ N BywB, unipotent cell.

Fact (Twist maps [Berenstein-Zelevinsky])

We can define a biregular isomorphism n,,: N* — N by

nw(z) = [zTw]_.

Recall the map
Yi: ((CX)Z — NV

W )
(tlv"'atf) — yi1(t1)"'yiz(tf)'
Here ¢ = (i1,...1) € I(w).
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The Chamber Ansatz (2)

For w € W, set N* := N_ N B, wB, unipotent cell.

Fact (Twist maps [Berenstein-Zelevinsky])

We can define a biregular isomorphism n,,: N* — N by

nw(2) := [T W] _.

Theorem (Berenstein-Zelevinsky)
Let i = (i1,...,i0) € I(w). Fork e {1,...,(}, set
Weg = Siy -+ S, Sety =y,(ty,...,t). Then
Hje]\{ik} Awgkwj,wj' (7]1;1 (y))_aj’ik
Awgk—ﬂﬂik@'% (771;1 (y)>Aw§kwik Wiy, (ngl(y))

fork e {1,...,(}.

iy =

This formula is called the Chamber Ansatz.
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g-analogue

From now on, we consider a ¢g-analogue of the theorem above. In the
settings of g-analogues, we do not have “actual group” but only have
“coordinate rings”. Hence we should consider the problem above in
terms of coordinate rings.

The map y; induces an injective algebra homomorphism

yi: C[N“] — C[t5, ..., t7].
The twist map 7,, induces the algebra automorphism
n.: C[NY] — C[NY].
The g-analogue of the former is known as a Feigin homomorphism
(explained later). Moreover, by using (the restriction of) generalized

minors of the form A/, -, we can easily check the following
formula;

R _A-l
%(Aw’wi,wi) - Awwi,wi ww;,w' w; -
: -1 :
Note: Awiw,w; A, o Awe e, € (dual canonical bases).
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Setup

Let
@ g=n" ®hdn" asymmetrizable Kac-Moody Lie algebra(D
finite dimensional simple Lie algebra) over C with (fixed)
triangular decomposition,

{a;}ier the simple roots of g, {h;}ics the simple coroots of g,
P a Z-lattice (weight lattice) of h* and P* := Homgz(P,Z) C b
such that {ai}iel C P and {hz‘}iel c P,

Po:={AeP|(\qa)>0forallieI}. Set (w;, h;)=0d;;.
W the Weyl group of g (W ~ P, P*),

I(w) the set of reduced words of w € W,

(—,—): P x P— Q a Q-valued (W-invariant) symmetric

Z-bilinear form on P satisfying the following conditions:
(Oéi,Oéi) S 2Z>0, <)\,]’L1> =7 )\,Oéi) / (Oé,',Oéi) fori € I, Ae P
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Quantized enveloping algebras

Definition
The quantized enveloping algebra U,(:= U,(g)) over Q(q) is the
Q(q)-algebra generated by

ei>fi (261)7 qh (h’EP*)?

with the foIIowing relations:

() ¢ =1, ¢"¢" qh+h

(ii) ¢"e; = q<h’°">e g ¢ f; = P figh,

g = Ug (g,04) (24,09)
() [ex 5] = 8 where g, = g 5 and 1, = g =52,

(iv) z};o P (—1)ha Pl T — 0 fori £ j (@ = e, f),
where 2 := 2 /[n}:!, [nli! = TTp_y (@ — ¢7%)/(a: — @),
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Quantized enveloping algebras

The quantized enveloping algebra U,(:= U,(g)) over Q(q) is the
Q(q)-algebra generated by

ei>fi (ZGI)7 qh (hEP*)7

Relations: ¢"e; = ¢'®"Me;q", g-Serre relations, . . .

Let U, be the subalgebra of U, generated by f;'s.

Hopf algebra structure of U,
Ale) =@t +1®e;, A(f) = fiol+t® fi, Ald") =¢"®",
e(e;) = e(f;) = 0,e(¢") = 1, Jantipode S.
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Quantized enveloping algebras

Definition
The quantized enveloping algebra U,(:= U,(g)) over Q(q) is the
Q(q)-algebra generated by

ei>fi (ZEI>7 qh (hEP*),

Relations: ¢e; = ¢*"™e;q", ¢-Serre relations, . . .

Let U, be the subalgebra of U, generated by f;'s.

Hopf algebra structure of U, (A, ¢, 5)
Let 7: U, — U, be the QQ-algebra involution defined by

q:qila €; = €, E:fla quih'
Let (—)7: U, — U, be the Q (q)-algebra anti-involutions defined by
T
(ei)T = fia (.fz)T = €, (qh) = qh'
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Canonical bases

Review the theory of canonical bases due to Lusztig and Kashiwara:
Denote by Uy .. the Q[g*"]-subalgebra of U, generated by the

elements {fi(") | i€ I,n € Zso}. Then there exists a free
Ap-submodule £ (00) of U such that

U@[qil]ﬂi”&oo)ﬂ,?f(oo) projection, Z(oo)/d];f(oo)
BV .= {G¥(b) | b€ B(oo)t B(c0)

is the isomorphism of QQ-vector spaces. Moreover we can construct a
“special” Q-basis #(o0) of £ (00)/qL(00). The inverse image of
(c0) under this map is called the canonical bases BV of U, . In
fact, B = {G'™(b) | b € #(c0)} is a Qlg™]-basis of Uy ..

For b € %#(00), G'¥(b) = G"(b) (bar-invariance property).
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Dual canonical bases

There exists a unique nondegenerate symmetric Q(q)-bilinear form
(, )z U; x U, — Q(q) such that

1 /
= el

(2

(17 ]-)L — ]-7 (fzx7y)L —
where e;: U — U is the Q(g)-linear map given by

wt x,h;
¢ (zy) = & (z)y + ¢ " xel (y), €if;) = by,

for homogeneous elements z,y € U,
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Dual canonical bases

There exists a unique nondegenerate symmetric Q(g)-bilinear form
(, ) U; xUr — Q(q).

Denote by B"" the basis of U~ dual to B with respect to the
bilinear form (, )z, that is, B"™ = {G"(b) | b € #(o0)} such that

(G (b), G (V). = Gpr for b, b’ € B(c0).

Definition (The dual bar-involution)

Define Q-linear map o: U, — U_,x +— o (x) = o, (x) by

(0 (x),y), = (z,7), for arbitrary y € U_ .

For b € #(0), (G (b)) = G"(b) (dual bar-invariance property).
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Specialization

Set

Agigs[N-] == {z € Uy | (2, Ugyer )i € Q=)= 3 QUG ().

beA(0)

Then Age=1j[N_] is a Q[¢*']-subalgebra of U, .
Specialization:

U, T, U~
U- B Ut o - "
q

“g—1" N\
AgyeV] = (U ~ CIN ]
QlgE1]

Here (U(n™));, denotes the graded dual of U(n™). Hence we can

regard U~ as a g-analogue of the coordinate ring C[N_] if we take

the dual canonical basis into account.
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Quantum closed unipotent cell

Proposition (Kashiwara)
Forw € W and i = (iy,...,1) € I(w), set

U= Y Qo) fir- fi
(l1,-~~ ,ag

Then the following hold:

(1) The subspace U, does not depend on the choice of i € I(w).

(2) Set (U,,)" ={xeU, | (x,U,,)L =0} Then (U,,)" isa
two-sided ideal of U .

(3) (U,,)" NB™ is a basis of (U, )" (equivalently, U, N B""
is a basis of U_ ).
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Quantum closed unipotent cell (2)

Definition (Quantum closed unipotent cell)
For w € W, set

A [N®]:=U, /(U )"

This is an algebra, called a quantum closed unipotent cell, by the
proposition above.

By the proposition (3) above, the subset of B"P induces a basis of

A [N™]. Denote by #,(cc) the corresponding subset of %(c0)
(called a Demazure crystal). The natural projection U, — A [N"]
will be described as x +— z. In fact, we have
- u “g—1" T
Agie=y[NZ]:= > Qlg*')G™ (b) ——— C[NZ].

be B (c0) Cqux1~
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Unipotent quantum minors

For A € P,, denote by V() the integrable highest weight
U,-module generated by a highest weight vector u, of weight .
Forw e W and 7 € I(w), set

Uy = fA(<h"1’81'2"'51'¢/\>) - f.(<hi"7_17Si£>\>)f.(<h”’)\>).ux.

% -1 ?
There exists a unique nondegenerate and symmetric bilinear form
(, )a: V(A) x V(A) = Q(gq) such that

(ur,up), =1 (z.v1,v2)x = (v1, 27 09)z
for v1, v € V(A) and z € U,

Definition (Unipotent quantum minors)

For A € P, and v1,v; € V()), define an element D,, ., € U, by

(Duy oy, )1 = (v1,2.02) for arbitrary z € U,
For wy,we € W, write Dy x o = D

Uwq XsUwo X
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Quantum unipotent cell

Proposition (Kashiwara)
For A € Py, wi,wy € W, we have Dy, € B"™ [[{0}.

Let w € W. Then Dy, := ¢“{Duyrr}rep. is an Ore set of A [N"]
consisting of g-central elements.

Definition
For w € W, we can consider the algebras of fractions

A [NY] = A [NZ][D,]

by the proposition above. This algebra is called a quantum unipotent
cell.

o’
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Quantum twist maps

Let w € W. Then

B;p = {q(A,wtb+)\—w>\)Dw)\’>\flGup(b) | = P_,.,b = %w<m)}

forms a basis of A,[N"]. We call B the dual canonical bases of
A [NY].

The dual bar involution o on U " induces the Q-linear isomorphism
o: AJN™] — A [N™], and this is extended to the Q-linear
isomorphism o: A,[N"] — A, [N"] satisfying

(wt z,wt y)

a(ry) =q a(y)o(x)
for homogeneous elements z,y € A,[N*] (We can naturally define
the (Q-graded structure on A [N™]).
Then every element of BP is fixed by o.
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Quantum twist maps (2)

Theorem (Kimura-O)

Let w € W. Then there exists the automorphism of the Q(q)-algebra
Mgt Ag[NZ] = Ag[N],

given by
Dv,u)\ — q_(A’WtU_A)Dw)\7>\_1D

U,V

for all A € P, and weight vectors v € V(\). Moreover 1,, , is
restricted to the permutation of BIP.

We call 7,4 a quantum twist map. For example we have

—(wi,w'w;—w; -1
nw:Q(D’w/wi:wi) =dq (=i, t Z)wai,wi wai,w/wr

cf. n; Aw’w-w~ :A_1~ »Aww-w’w--
T]w 1y M wWw;,W; (2] 2

Hironori Oya (The University of Tokyo) The Quantum Chamber Ansatz Oberseminar Algebra 17 / 24



Feigin homomorphisms

Definition (Feigin homomorphisms)

Let 4 = (iy,...,4¢) € I*. The Laurent g-polynomial algebra L; is the
unital associative Q(q)-algebra generated by i, ... ' subject to

the relations;
tity = ¢t for 1 < j < k < £,
tity' =t "ty =1for1 <k <.

Then we can define the Q(g)-linear map ®;: U, — L; by

T Z gi(a)(z, i(lal) .. fi(;@))Lt‘fl .. .t‘gf,
a:(al,...,ag)EZéo

4 ap(ar—1)/2

where ¢;(a) :=[],_, 4, . Note that the all but finitely many

summands in the right-hand side are zero. The map ®; is called a
Feigin homomorphism.

v

Hironori Oya (The University of Tokyo) The Quantum Chamber Ansatz Oberseminar Algebra

18 / 24



Feigin homomorphisms (2)

Proposition (Berenstein)

(1) Fori € I, the map ®; is a Q(q)-algebra homomorphism.
(2) Forw € W and i € I(w), we have Ker ®; = (U_q)l.

w

(3) Forw e W, i = (i,...,i) € I(w) and A € Py, we have
®; (Durp) = qi(d)t]" - - - t*

where d = (dy, . .., dy) with dy, := (h 8, N).

ik Sty

Hence ®; gives rise to an injective algebra homomorphism
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The quantum Chamber Ansatz
Theorem (O)

Letwe W, 1= (i1,...,i5) € I(w) and k € {1,...,¢}. Then

k
- dj(d;+1)/2 | ,—di,—d —d
(@5 0 1) (Do, o, ) = (quj . )tl g g

j=1
where d; := (hi?.7 Sir 84, @i,) (J =1,...,k). Denote this
element by D;@cwik i, € Li.

Corollary
Let i = (i1,...,i0) € I(w). Then, fork € {1,...,(},
i =1 1 -1 i —a;;
e (DL D T (D, )

JEN{ik}
here the right-hand side is determined up to powers of q.

4
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Relation with GLS theory

Let @ = (Qo, @1, s,t) be a finite quiver without oriented cycles.
From now on, we assume that g is a symmetric Kac-Moody Lie
algebra associated with @) (Qo = I). Denote by A the preprojective
algebra corresponding to (), that is,

A:=CQ/() (a"a—aa")),
a€eQq

here CQ is the path algebra of the double quiver of ). For a
nilpotent A-module X, we can define px € C[N"] satisfying the
following:

ox (it ... b)) = Y X(Faax)ti oty
a:(ah...,ag)EZlZO

here ¢ € I(w), x denotes the Euler characteristic, and F; 4 x is the
projective variety of flags X = (X =Xy D X; D - D X, =0) of
submodules of X such that Xj_;/X}, ~ S for 1 < k < £ (Lusztig).
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Relation with GLS theory (2)

Buan-lyama-Reiten-Scott have constructed a 2-Calabi-Yau Frobenius
subcategory C,, of A-modules, and GeiB-Leclerc-Schroer have proved
that

CIN"] = spanc{px | X € Cu}[{ps | I: Cyp-injective-projective} ]

Note that an object is projective in C,, (C,-projective) if and only if it
is injective in C,, (C,-injective) since C,, is Frobenius.

For X € C,, denote by I(X) the injective hull of X in C,, and by
Q,1(X) the cokernel of X — I(X).

w

0— X = I(X)— Q. (X)—0.
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Relation with GLS theory (3)

Let we W. For X € Cy, n}(¢x) = golf(lx)goml(x).

GLS have also constructed the algebra A,[N"] from C,, and
constructed a g-analogue of ,, denoted by Y}, for every reachable
rigid module M. By using the theorem above, we obtain the
following:

Theorem (Kimura-O)
Let w € W. For a reachable rigid module M,

Tho,a(Yar) = Yiian Yozt

vy

Corollary

Let M as above. Then Yy, € B™ if and only if Y1), € B™.

’
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