Twist maps on quantum unipotent cells and the Chamber Ansatz

Hironori Oya

The University of Tokyo

Part of this work is joint with Yoshiyuki Kimura Oberseminar Algebra, 11/10/2016

Introduction

Aims of this talk:

Establish a quantum analogue of "the Chamber Ansatz".

Classical $(q=1)$ Factorization problem and the Chamber Ansatz: Consider the following map:

$$
\begin{array}{llll}
y_{i}: & \left(\mathbb{C}^{\times}\right)^{\ell} & \rightarrow & N_{\underline{w}}^{w} \\
\Psi \\
\left(t_{1}, \ldots, t_{\ell}\right) & \longmapsto & \exp \left(t_{1} F_{i_{1}}\right) \cdots \exp \left(t_{\ell} F_{i_{\ell}}\right) .
\end{array}
$$

Here \boldsymbol{i} a reduced word of w, and $N_{-}^{w}:=N_{-} \cap B_{+} w B_{+}$unipotent cell. (In fact, This gives a birational isomorphism from \mathbb{C}^{ℓ} to a Schubert cell $X(w)$.)

Problem

Describe the inverse birational isomorphism y_{i}^{-1}.

Introduction (2)

Berenstein-Zelevinsky (1997) gives formulae for y_{i}^{-1}, called "the Chamber Ansatz". The key tool is a twist map $\eta_{w}^{*}: \mathbb{C}\left[N_{-}^{w}\right] \rightarrow \mathbb{C}\left[N_{-}^{w}\right]$. By the way, there are known q-analogues of $\mathbb{C}\left[N_{-}^{w}\right]$ and y_{i}. The following are the main result.

Theorem (Kimura-O)

There exists " q-analogue" of the twist map η_{w}^{*}. Moreover quantum twist maps preserve dual canonical bases.

Theorem (O)

The Chamber Ansatz formulae also hold in quantum settings by using quantum twist maps above.

The Chamber Ansatz

Let

- \mathfrak{g} a semisimple Lie algebra over $\mathbb{C}, \mathfrak{g}=\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}^{+}$triangular decomposition (fixed),
- $\left\{E_{i}, F_{i}, H_{i} \mid i \in I\right\}$ Chevalley generators of $\mathfrak{g}, A=\left(a_{i j}\right)_{i, j \in I}$ the Cartan matrix (i.e. $\left[H_{i}, E_{j}\right]=a_{i j} E_{j}, \ldots$),
- G connected simply connected algebraic group (over \mathbb{C}) with Lie $G=\mathfrak{g}$,
- N_{-}, H, N_{+}closed subgroups of G such that Lie $N_{-}=\mathfrak{n}^{-}$, Lie $H=\mathfrak{h}$, Lie $N_{+}=\mathfrak{n}^{+}$,
- $B_{-}:=N_{-} H, B_{+}:=H N_{+}$Borel subgroups,
- $x_{i}(t)=\exp \left(t E_{i}\right), y_{i}(t)=\exp \left(t F_{i}\right)$ 1-parameter subgroups corresponding to E_{i}, F_{i},
- $W:=N_{G}(H) / H$ Weyl group, e its unit, $\left\{s_{i} \mid i \in I\right\}$ simple reflections, $\ell(w)$ the length of $w \in W$,

The Chamber Ansatz

Let $\mathfrak{g}, G, N_{ \pm}, H, B_{ \pm}, x_{i}(t), y_{i}(t), W$ standard notation.

- $I(w):=\left\{\left(i_{1}, \ldots, i_{\ell(w)}\right) \in I^{\ell(w)} \mid w=s_{i_{1}} \cdots s_{i_{\ell(w)}}\right\}$ the set of reduced words of $w \in W$,
- $\bar{s}_{i}:=x_{i}(-1) y_{i}(1) x_{i}(-1)(i \in I), \bar{w}:=\bar{s}_{i_{1}} \cdots \bar{s}_{i_{\ell}}$ $\left(\left(i_{1}, \ldots, i_{\ell}\right) \in I(w)\right)$,
In fact, \bar{w} does not depend on the choice of $\left(i_{1}, \ldots, i_{\ell}\right) \in I(w)$,
- $\varpi_{i} \in \operatorname{Hom}_{\text {alg.grp. }}\left(H, \mathbb{C}^{\times}\right)$fundamental weight corresponding to $i \in I$,
- $G_{0}:=N_{-} H N_{+}, g=[g]_{-}[g]_{0}[g]_{+}\left(g \in G_{0}\right)$ the corresponding decomposition,

The Chamber Ansatz

Let $\mathfrak{g}, G, N_{ \pm}, H, B_{ \pm}, x_{i}(t), y_{i}(t), W, I(w), \bar{w}, \varpi_{i}$ standard notation. Set $G_{0}:=N_{-} H N_{+}, g=[g]_{-}[g]_{0}[g]_{+}\left(g \in G_{0}\right)$.

Definition (Generalized minors)

For $i \in I$, denote by $\Delta_{\varpi_{i}, \varpi_{i}}$ the regular function on G whose restriction to the open dense set G_{0} is given by

$$
\Delta_{\varpi_{i}, \varpi_{i}}(g):=\varpi_{i}\left([g]_{0}\right)
$$

For $w_{1}, w_{2} \in W$, define $\Delta_{w_{1} \varpi_{i}, w_{2} \varpi_{i}} \in \mathbb{C}[G]$ by

$$
\Delta_{w_{1} \varpi_{i}, w_{2} \varpi_{i}}(g)=\Delta_{\varpi_{i}, \varpi_{i}}\left({\overline{w_{1}}}^{-1} g \overline{w_{2}}\right)
$$

These elements are called generalized minors.

The Chamber Ansatz (2)

For $w \in W$, set $N_{-}^{w}:=N_{-} \cap B_{+} \bar{w} B_{+}$unipotent cell.

Fact (Twist maps [Berenstein-Zelevinsky])

We can define a biregular isomorphism $\eta_{w}: N_{-}^{w} \rightarrow N_{-}^{w}$ by

$$
\eta_{w}(z):=\left[z^{T} \bar{w}\right]_{-} .
$$

Recall the map

$$
y_{i}: \begin{array}{ccc}
\left(\mathbb{C}^{\times}\right)^{\ell} & \rightarrow & N^{w} \\
\Psi \\
\left(t_{1}, \ldots, t_{\ell}\right) & \longmapsto & y_{i_{1}}\left(t_{1}\right) \cdots y_{i_{\ell}}\left(t_{\ell}\right) .
\end{array}
$$

Here $\boldsymbol{i}=\left(i_{1}, \ldots i_{\ell}\right) \in I(w)$.

The Chamber Ansatz (2)

For $w \in W$, set $N_{-}^{w}:=N_{-} \cap B_{+} \bar{w} B_{+}$unipotent cell.

Fact (Twist maps [Berenstein-Zelevinsky])

We can define a biregular isomorphism $\eta_{w}: N_{-}^{w} \rightarrow N_{-}^{w}$ by

$$
\eta_{w}(z):=\left[z^{T} \bar{w}\right]_{-} .
$$

Theorem (Berenstein-Zelevinsky)

Let $\boldsymbol{i}=\left(i_{1}, \ldots, i_{\ell}\right) \in I(w)$. For $k \in\{1, \ldots, \ell\}$, set $w_{\leq k}:=s_{i_{1}} \cdots s_{i_{k}}$. Set $y=y_{i}\left(t_{1}, \ldots, t_{\ell}\right)$. Then

$$
t_{k}=\frac{\prod_{j \in I \backslash\left\{i_{k}\right\}} \Delta_{w_{\leq k} \varpi_{j}, \varpi_{j}}\left(\eta_{w}^{-1}(y)\right)^{-a_{j, i_{k}}}}{\Delta_{w_{\leq k-1} \varpi_{i_{k}}, w_{i_{k}}}\left(\eta_{w}^{-1}(y)\right) \Delta_{w_{\leq k} \varpi_{i_{k}}, \varpi_{i_{k}}}\left(\eta_{w}^{-1}(y)\right)}
$$

for $k \in\{1, \ldots, \ell\}$.
This formula is called the Chamber Ansatz.

q-analogue

From now on, we consider a q-analogue of the theorem above. In the settings of q-analogues, we do not have "actual group" but only have "coordinate rings". Hence we should consider the problem above in terms of coordinate rings.
The map y_{i}^{*} induces an injective algebra homomorphism

$$
y_{i}^{*}: \mathbb{C}\left[N_{-}^{w}\right] \rightarrow \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{\ell}^{ \pm}\right]
$$

The twist map η_{w} induces the algebra automorphism

$$
\eta_{w}^{*}: \mathbb{C}\left[N_{-}^{w}\right] \rightarrow \mathbb{C}\left[N_{-}^{w}\right]
$$

The q-analogue of the former is known as a Feigin homomorphism (explained later). Moreover, by using (the restriction of) generalized minors of the form $\Delta_{w^{\prime} \varpi_{i}, \varpi_{i}}$, we can easily check the following formula;

$$
\eta_{w}^{*}\left(\Delta_{w^{\prime} \varpi_{i}, \varpi_{i}}\right)=\Delta_{w \varpi_{i}, \varpi_{i}}^{-1} \Delta_{w \varpi_{i}, w^{\prime} \varpi_{i}}
$$

Note: $\Delta_{w^{\prime} \varpi_{i}, \varpi_{i}}, \Delta_{w \varpi_{i}, \varpi_{i}}^{-1} \Delta_{w \varpi_{i}, w^{\prime} \varpi_{i}} \in$ (dual canonical bases),

Setup

Notation

Let

- $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$a symmetrizable Kac-Moody Lie algebra(ว finite dimensional simple Lie algebra) over \mathbb{C} with (fixed) triangular decomposition,
- $\left\{\alpha_{i}\right\}_{i \in I}$ the simple roots of $\mathfrak{g},\left\{h_{i}\right\}_{i \in I}$ the simple coroots of \mathfrak{g},
- P a \mathbb{Z}-lattice (weight lattice) of \mathfrak{h}^{*} and $P^{*}:=\operatorname{Hom}_{\mathbb{Z}}(P, \mathbb{Z}) \subset \mathfrak{h}$ such that $\left\{\alpha_{i}\right\}_{i \in I} \subset P$ and $\left\{h_{i}\right\}_{i \in I} \subset P^{*}$,
- $P_{+}:=\left\{\lambda \in P \mid\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle \geq 0\right.$ for all $\left.i \in I\right\}$. Set $\left\langle\varpi_{i}, h_{j}\right\rangle=\delta_{i j}$.
- W the Weyl group of $\mathfrak{g}\left(W \curvearrowright P, P^{*}\right)$,
- $I(w)$ the set of reduced words of $w \in W$,
- $(-,-): P \times P \rightarrow \mathbb{Q}$ a \mathbb{Q}-valued (W-invariant) symmetric \mathbb{Z}-bilinear form on P satisfying the following conditions: $\left(\alpha_{i}, \alpha_{i}\right) \in 2 \mathbb{Z}_{>0},\left\langle\lambda, h_{i}\right\rangle=2\left(\lambda, \alpha_{i}\right) /\left(\alpha_{i}, \alpha_{i}\right)$ for $i \in I, \lambda \in P$.

Quantized enveloping algebras

Definition

The quantized enveloping algebra $\mathbf{U}_{q}\left(:=\mathbf{U}_{q}(\mathfrak{g})\right)$ over $\mathbb{Q}(q)$ is the $\mathbb{Q}(q)$-algebra generated by

$$
e_{i}, f_{i}(i \in I), q^{h}\left(h \in P^{*}\right)
$$

with the following relations:
(i) $q^{0}=1, q^{h} q^{h^{\prime}}=q^{h+h^{\prime}}$,
(ii) $q^{h} e_{i}=q^{\left\langle h, \alpha_{i}\right\rangle} e_{i} q^{h}, q^{h} f_{i}=q^{-\left\langle h, \alpha_{i}\right\rangle} f_{i} q^{h}$,
(iii) $\left[e_{i}, f_{j}\right]=\delta_{i j} \frac{t_{i}-t_{i}^{-1}}{q_{i}-q_{i}^{-1}}$ where $q_{i}:=q^{\frac{\left(\alpha_{i}, \alpha_{i}\right)}{2}}$ and $t_{i}:=q^{\frac{\left(\alpha_{i}, \alpha_{i}\right)}{2} h_{i}}$,
(iv) $\sum_{k=0}^{1-\left\langle h_{i}, \alpha_{j}\right\rangle}(-1)^{k} x_{i}^{(k)} x_{j} x_{i}^{\left(1-\left\langle h_{i}, \alpha_{j}\right\rangle-k\right)}=0$ for $i \neq j(x=e, f)$,
where $x_{i}^{(n)}:=x_{i}^{n} /[n]_{i}!,[n]_{i}!:=\prod_{k=1}^{n}\left(q_{i}^{k}-q_{i}^{-k}\right) /\left(q_{i}-q_{i}^{-1}\right)$.

Quantized enveloping algebras

Definition

The quantized enveloping algebra $\mathbf{U}_{q}\left(:=\mathbf{U}_{q}(\mathfrak{g})\right)$ over $\mathbb{Q}(q)$ is the $\mathbb{Q}(q)$-algebra generated by

$$
e_{i}, f_{i}(i \in I), q^{h}\left(h \in P^{*}\right),
$$

Relations: $q^{h} e_{i}=q^{\left\langle\alpha_{i}, h\right\rangle} e_{i} q^{h}, q$-Serre relations, \ldots Let \mathbf{U}_{q}^{-}be the subalgebra of \mathbf{U}_{q} generated by f_{i} 's.

Hopf algebra structure of \mathbf{U}_{q}

$$
\begin{gathered}
\Delta\left(e_{i}\right)=e_{i} \otimes t_{i}^{-1}+1 \otimes e_{i}, \Delta\left(f_{i}\right)=f_{i} \otimes 1+t_{i} \otimes f_{i}, \Delta\left(q^{h}\right)=q^{h} \otimes q^{h} \\
\varepsilon\left(e_{i}\right)=\varepsilon\left(f_{i}\right)=0, \varepsilon\left(q^{h}\right)=1, \exists \text { antipode } S
\end{gathered}
$$

Quantized enveloping algebras

Definition

The quantized enveloping algebra $\mathbf{U}_{q}\left(:=\mathbf{U}_{q}(\mathfrak{g})\right)$ over $\mathbb{Q}(q)$ is the $\mathbb{Q}(q)$-algebra generated by

$$
e_{i}, f_{i}(i \in I), q^{h}\left(h \in P^{*}\right)
$$

Relations: $q^{h} e_{i}=q^{\left\langle\alpha_{i}, h\right\rangle} e_{i} q^{h}, q$-Serre relations, \ldots Let \mathbf{U}_{q}^{-}be the subalgebra of \mathbf{U}_{q} generated by f_{i} 's.

Hopf algebra structure of $\mathbf{U}_{q}(\Delta, \varepsilon, S)$
Let ${ }^{-}: \mathbf{U}_{q} \rightarrow \mathbf{U}_{q}$ be the \mathbb{Q}-algebra involution defined by

$$
\bar{q}=q^{-1}, \quad \overline{e_{i}}=e_{i}, \quad \overline{f_{i}}=f_{i}, \quad \overline{q^{h}}=q^{-h}
$$

Let $(-)^{T}: \mathbf{U}_{q} \rightarrow \mathbf{U}_{q}$ be the $\mathbb{Q}(q)$-algebra anti-involutions defined by

$$
\left(e_{i}\right)^{T}=f_{i}, \quad\left(f_{i}\right)^{T}=e_{i}, \quad\left(q^{h}\right)^{T}=q^{h}
$$

Canonical bases

Review the theory of canonical bases due to Lusztig and Kashiwara: Denote by $\mathbf{U}_{\mathbb{Q}\left[q^{ \pm 1]}\right]}^{-}$the $\mathbb{Q}\left[q^{ \pm 1}\right]$-subalgebra of \mathbf{U}_{q}^{-}generated by the elements $\left\{f_{i}^{(n)} \mid i \in I, n \in \mathbb{Z}_{\geq 0}\right\}$. Then there exists a free \mathcal{A}_{0}-submodule $\mathscr{L}(\infty)$ of \mathbf{U}_{q}^{-}such that

$$
\begin{array}{ccc}
\mathbf{U}_{\mathscr{Q}\left[q^{ \pm 1]}\right]}^{-} \cap \mathscr{L}(\infty) \cap \overline{\mathscr{L}(\infty)} & \xrightarrow{\text { projection }} & \mathscr{L}(\infty) / q \mathscr{L}(\infty) \\
\mathbf{B}^{\text {low }}:=\left\{G^{\text {low }}(b) \mid b \in \mathscr{B}(\infty)\right\} & \longmapsto & \mathscr{B}(\infty)
\end{array}
$$

is the isomorphism of \mathbb{Q}-vector spaces. Moreover we can construct a "special" \mathbb{Q}-basis $\mathscr{B}(\infty)$ of $\mathscr{L}(\infty) / q \mathscr{L}(\infty)$. The inverse image of $\mathscr{B}(\infty)$ under this map is called the canonical bases $\mathbf{B}^{\text {low }}$ of \mathbf{U}_{q}^{-}. In fact, $\mathbf{B}^{\text {low }}=\left\{G^{\text {low }}(b) \mid b \in \mathscr{B}(\infty)\right\}$ is a $\mathbb{Q}\left[q^{ \pm 1}\right]$-basis of $\mathbf{U}_{\mathbb{Q}\left[q^{ \pm 1]}\right]}^{-}$. For $b \in \mathscr{B}(\infty), \overline{G^{\text {low }}(b)}=G^{\text {low }}(b)$ (bar-invariance property).

Dual canonical bases

Definition

There exists a unique nondegenerate symmetric $\mathbb{Q}(q)$-bilinear form $(,)_{L}: \mathbf{U}_{q}^{-} \times \mathbf{U}_{q}^{-} \rightarrow \mathbb{Q}(q)$ such that

$$
(1,1)_{L}=1, \quad\left(f_{i} x, y\right)_{L}=\frac{1}{1-q_{i}^{2}}\left(x, e_{i}^{\prime}(y)\right)_{L} .
$$

where $e_{i}^{\prime}: \mathbf{U}_{q}^{-} \rightarrow \mathbf{U}_{q}^{-}$is the $\mathbb{Q}(q)$-linear map given by

$$
e_{i}^{\prime}(x y)=e_{i}^{\prime}(x) y+q_{i}^{\left\langle\mathrm{w} t x, h_{i}\right\rangle} x e_{i}^{\prime}(y), \quad e_{i}^{\prime}\left(f_{j}\right)=\delta_{i j},
$$

for homogeneous elements $x, y \in \mathbf{U}_{q}^{-}$.

Dual canonical bases

Definition

There exists a unique nondegenerate symmetric $\mathbb{Q}(q)$-bilinear form $(,)_{L}: \mathbf{U}_{q}^{-} \times \mathbf{U}_{q}^{-} \rightarrow \mathbb{Q}(q)$.
Denote by $\mathbf{B}^{\text {up }}$ the basis of \mathbf{U}_{q}^{-}dual to $\mathbf{B}^{\text {low }}$ with respect to the bilinear form $(,)_{L}$, that is, $\mathbf{B}^{\mathrm{up}}=\left\{G^{\mathrm{up}}(b) \mid b \in \mathscr{B}(\infty)\right\}$ such that

$$
\left(G^{\mathrm{low}}(b), G^{\mathrm{up}}\left(b^{\prime}\right)\right)_{L}=\delta_{b, b^{\prime}} \text { for } b, b^{\prime} \in \mathscr{B}(\infty)
$$

Definition (The dual bar-involution)

Define \mathbb{Q}-linear map $\sigma: \mathbf{U}_{q}^{-} \rightarrow \mathbf{U}_{q}^{-}, x \mapsto \sigma(x)=\sigma_{L}(x)$ by

$$
(\sigma(x), y)_{L}=\overline{(x, \bar{y})}_{L} \text { for arbitrary } y \in \mathbf{U}_{q}^{-}
$$

For $b \in \mathscr{B}(\infty), \sigma\left(G^{\mathrm{up}}(b)\right)=G^{\mathrm{up}}(b)$ (dual bar-invariance property).

Specialization

Set

$$
\mathbf{A}_{\mathbb{Q}\left[q^{ \pm 1}\right]}\left[N_{-}\right]:=\left\{x \in \mathbf{U}_{q}^{-} \mid\left(x, \mathbf{U}_{\mathbb{Q}\left[q^{ \pm 1}\right]}^{-}\right)_{L} \in \mathbb{Q}\left[q^{ \pm 1}\right]\right\}=\sum_{b \in \mathscr{B}(\infty)} \mathbb{Q}\left[q^{ \pm 1}\right] G^{\mathrm{up}}(b) .
$$

Then $\mathbf{A}_{\mathbb{Q}\left[q^{ \pm 1}\right]}\left[N_{-}\right]$is a $\mathbb{Q}\left[q^{ \pm 1]}\right.$-subalgebra of \mathbf{U}_{q}^{-}.
Specialization:

Here $\left(\mathbf{U}\left(\mathfrak{n}^{-}\right)\right)_{\mathrm{gr}}^{*}$ denotes the graded dual of $\mathbf{U}\left(\mathfrak{n}^{-}\right)$. Hence we can regard \mathbf{U}_{q}^{-}as a q-analogue of the coordinate ring $\mathbb{C}\left[N_{-}\right]$if we take the dual canonical basis into account.

Quantum closed unipotent cell

Proposition (Kashiwara)

For $w \in W$ and $\boldsymbol{i}=\left(i_{1}, \ldots, i_{\ell}\right) \in I(w)$, set

$$
\mathbf{U}_{q, w}^{-}:=\sum_{a_{1}, \cdots, a_{\ell}} \mathbb{Q}(q) f_{i_{1}}^{a_{1}} \cdots f_{i_{\ell}}^{a_{\ell}}
$$

Then the following hold:
(1) The subspace $\mathbf{U}_{q, w}^{-}$does not depend on the choice of $\boldsymbol{i} \in I(w)$.
(2) $\operatorname{Set}\left(\mathbf{U}_{q, w}^{-}\right)^{\perp}:=\left\{x \in \mathbf{U}_{q}^{-} \mid\left(x, \mathbf{U}_{q, w}^{-}\right)_{L}=0\right\}$. Then $\left(\mathbf{U}_{q, w}^{-}\right)^{\perp}$ is a two-sided ideal of U_{q}^{-}.
(3) $\left(\mathbf{U}_{q, w}^{-}\right)^{\perp} \cap \mathbf{B}^{\text {up }}$ is a basis of $\left(\mathbf{U}_{q, w}^{-}\right)^{\perp}$ (equivalently, $\mathbf{U}_{q, w}^{-} \cap \mathbf{B}^{\text {low }}$ is a basis of $\mathrm{U}_{q, w}^{-}$).

Quantum closed unipotent cell (2)

Definition (Quantum closed unipotent cell)

For $w \in W$, set

$$
\mathbf{A}_{q}\left[\overline{N_{-}^{w}}\right]:=\mathbf{U}_{q}^{-} /\left(\mathbf{U}_{q, w}^{-}\right)^{\perp}
$$

This is an algebra, called a quantum closed unipotent cell, by the proposition above.

By the proposition (3) above, the subset of $\mathbf{B}^{\text {up }}$ induces a basis of $\mathbf{A}_{q}\left[\overline{N_{-}^{w}}\right]$. Denote by $\mathscr{B}_{w}(\infty)$ the corresponding subset of $\mathscr{B}(\infty)$ (called a Demazure crystal). The natural projection $\mathbf{U}_{q}^{-} \rightarrow \mathbf{A}_{q}\left[\overline{N_{-}^{w}}\right]$ will be described as $x \mapsto \underline{x}$. In fact, we have

$$
\mathbf{A}_{\mathbb{Q}\left[q^{ \pm 1]}\right]}\left[\overline{N_{-}^{w}}\right]:=\sum_{b \in \mathscr{B}_{w}(\infty)} \mathbb{Q}\left[q^{ \pm 1}\right] \underline{G^{\mathrm{up}}(b)} \underset{\mathbb{C} \otimes_{\mathbb{Q}\left[q^{ \pm 1]}\right.}}{\stackrel{" q \rightarrow 1^{\prime \prime}}{ }} \mathbb{C}\left[\overline{N_{-}^{w}}\right] .
$$

Unipotent quantum minors

For $\lambda \in P_{+}$, denote by $V(\lambda)$ the integrable highest weight \mathbf{U}_{q}-module generated by a highest weight vector u_{λ} of weight λ. For $w \in W$ and $i \in I(w)$, set

$$
u_{w \lambda}=f_{i_{1}}^{\left(\left\langle h_{i_{1}}, s_{i_{2}} \cdots s_{i_{\ell}} \lambda\right\rangle\right)} \cdots f_{i_{\ell-1}}^{\left(\left\langle h_{i_{\ell-1}}, s_{i_{\ell}} \lambda\right\rangle\right)} f_{i_{\ell}}^{\left(\left\langle h_{i_{\ell}}, \lambda\right\rangle\right)} \cdot u_{\lambda} .
$$

There exists a unique nondegenerate and symmetric bilinear form $(,)_{\lambda}: V(\lambda) \times V(\lambda) \rightarrow \mathbb{Q}(q)$ such that

$$
\left(u_{\lambda}, u_{\lambda}\right)_{\lambda}=1 \quad\left(x . v_{1}, v_{2}\right)_{\lambda}=\left(v_{1}, x^{T} \cdot v_{2}\right)_{\lambda}
$$

for $v_{1}, v_{2} \in V(\lambda)$ and $x \in \mathbf{U}_{q}$.

Definition (Unipotent quantum minors)

For $\lambda \in P_{+}$and $v_{1}, v_{2} \in V(\lambda)$, define an element $D_{v_{1}, v_{2}} \in \mathbf{U}_{q}^{-}$by

$$
\left(D_{v_{1}, v_{2}}, x\right)_{L}=\left(v_{1}, x . v_{2}\right)_{\lambda} \text { for arbitrary } x \in \mathbf{U}_{q}^{-} .
$$

For $w_{1}, w_{2} \in W$, write $D_{w_{1} \lambda, w_{2} \lambda}:=D_{u_{w_{1} \lambda}, u_{w_{2} \lambda}}$.

Quantum unipotent cell

Proposition (Kashiwara)

For $\lambda \in P_{+}, w_{1}, w_{2} \in W$, we have $D_{w_{1} \lambda, w_{2} \lambda} \in \mathbf{B}^{\mathrm{up}} \amalg\{0\}$.

Proposition

Let $w \in W$. Then $\underline{\mathcal{D}_{w}}:=q^{\mathbb{Z}}\left\{\underline{D_{w \lambda, \lambda}}\right\}_{\lambda \in P_{+}}$is an Ore set of $\mathbf{A}_{q}\left[\overline{N_{-}^{w}}\right]$ consisting of q-central elements.

Definition

For $w \in W$, we can consider the algebras of fractions

$$
\mathbf{A}_{q}\left[N_{-}^{w}\right]:=\mathbf{A}_{q}\left[\overline{N_{-}^{w}}\right]\left[\underline{\mathcal{D}_{w}^{-1}}\right]
$$

by the proposition above. This algebra is called a quantum unipotent cell.

Quantum twist maps

Proposition

Let $w \in W$. Then

$$
\tilde{\mathbf{B}}_{w}^{\mathrm{up}}:=\left\{q^{(\lambda, \mathrm{wt} b+\lambda-w \lambda)} \underline{D_{w \lambda, \lambda}}{ }^{-1} \underline{G^{\mathrm{up}}(b)} \mid \lambda \in P_{+}, b \in \mathscr{B}_{w}(\infty)\right\}
$$

forms a basis of $\mathbf{A}_{q}\left[N_{-}^{w}\right]$. We call $\tilde{\mathbf{B}}_{w}^{\text {up }}$ the dual canonical bases of $\mathbf{A}_{q}\left[N_{-}^{w}\right]$.

The dual bar involution σ on U_{q}^{-}induces the \mathbb{Q}-linear isomorphism $\sigma: \mathbf{A}_{q}\left[\overline{N_{-}^{w}}\right] \rightarrow \mathbf{A}_{q}\left[\overline{N_{-}^{w}}\right]$, and this is extended to the \mathbb{Q}-linear isomorphism $\sigma: \mathbf{A}_{q}\left[N_{-}^{w}\right] \rightarrow \mathbf{A}_{q}\left[N_{-}^{w}\right]$ satisfying

$$
\sigma(x y)=q^{(\mathrm{wt} x, \mathrm{wt} y)} \sigma(y) \sigma(x)
$$

for homogeneous elements $x, y \in \mathbf{A}_{q}\left[N_{-}^{w}\right]$ (We can naturally define the Q-graded structure on $\left.\mathbf{A}_{q}\left[N_{-}^{w}\right]\right)$.
Then every element of $\tilde{\mathbf{B}}_{w}^{\text {up }}$ is fixed by σ.

Quantum twist maps (2)

Theorem (Kimura-O)

Let $w \in W$. Then there exists the automorphism of the $\mathbb{Q}(q)$-algebra

$$
\eta_{w, q}: \mathbf{A}_{q}\left[N_{-}^{w}\right] \rightarrow \mathbf{A}_{q}\left[N_{-}^{w}\right]
$$

given by

$$
\underline{D_{v, u_{\lambda}}} \mapsto q^{-(\lambda, \mathrm{wt} v-\lambda)} \underline{D_{w \lambda, \lambda}}{\underline{\underline{D_{u_{w \lambda}, v}}}}^{-1}
$$

for all $\lambda \in P_{+}$and weight vectors $v \in V(\lambda)$. Moreover $\eta_{w, q}$ is restricted to the permutation of $\tilde{\mathbf{B}}_{w}^{\text {up }}$.

We call $\eta_{w, q}$ a quantum twist map. For example we have

$$
\eta_{w, q}\left(\underline{D_{w^{\prime} \varpi_{i}, \varpi_{i}}}\right)=q^{-\left(\varpi_{i}, w^{\prime} \varpi_{i}-\varpi_{i}\right)} \underline{D_{w \varpi_{i}, \varpi_{i}}}{ }^{-1} \underline{D_{w \varpi_{i}, w^{\prime} \varpi_{i}}} .
$$

$\left(\right.$ cf. $\left.\eta_{w}^{*}\left(\Delta_{w^{\prime} \varpi_{i}, \varpi_{i}}\right)=\Delta_{w \varpi_{i}, \varpi_{i}}^{-1} \Delta_{w \varpi_{i}, w^{\prime} \varpi_{i}}.\right)$

Feigin homomorphisms

Definition (Feigin homomorphisms)

Let $\boldsymbol{i}=\left(i_{1}, \ldots, i_{\ell}\right) \in I^{\ell}$. The Laurent q-polynomial algebra $L_{\boldsymbol{i}}$ is the unital associative $\mathbb{Q}(q)$-algebra generated by $t_{1}^{ \pm 1}, \ldots, t_{\ell}^{ \pm 1}$ subject to the relations;

$$
\begin{aligned}
& t_{j} t_{k}=q^{\left(\alpha_{i_{j}}, \alpha_{i_{k}}\right)} t_{k} t_{j} \text { for } 1 \leq j<k \leq \ell \\
& t_{k} t_{k}^{-1}=t_{k}^{-1} t_{k}=1 \text { for } 1 \leq k \leq \ell
\end{aligned}
$$

Then we can define the $\mathbb{Q}(q)$-linear $\operatorname{map} \Phi_{i}: \mathbf{U}_{q}^{-} \rightarrow L_{i}$ by

$$
x \mapsto \sum_{\boldsymbol{a}=\left(a_{1}, \ldots, a_{\ell}\right) \in \mathbb{Z}_{\geq 0}^{\ell}} q_{i}(\boldsymbol{a})\left(x, f_{i_{1}}^{\left(a_{1}\right)} \cdots f_{i_{\ell}}^{\left(a_{\ell}\right)}\right)_{L} t_{1}^{a_{1}} \cdots t_{\ell}^{a_{\ell}}
$$

where $q_{i}(\boldsymbol{a}):=\prod_{k=1}^{\ell} q_{i_{k}}^{a_{k}\left(a_{k}-1\right) / 2}$. Note that the all but finitely many summands in the right-hand side are zero. The map Φ_{i} is called a Feigin homomorphism.

Feigin homomorphisms (2)

Proposition (Berenstein)

(1) For $\boldsymbol{i} \in I^{\ell}$, the map Φ_{i} is a $\mathbb{Q}(q)$-algebra homomorphism.
(2) For $w \in W$ and $i \in I(w)$, we have $\operatorname{Ker} \Phi_{i}=\left(\mathbf{U}_{w, q}^{-}\right)^{\perp}$.
(3) For $w \in W, \boldsymbol{i}=\left(i_{1}, \ldots, i_{\ell}\right) \in I(w)$ and $\lambda \in P_{+}$, we have

$$
\Phi_{i}\left(D_{w \lambda, \lambda}\right)=q_{i}(\boldsymbol{d}) t_{1}^{d_{1}} \cdots t_{\ell}^{d_{\ell}}
$$

where $\boldsymbol{d}=\left(d_{1}, \ldots, d_{\ell}\right)$ with $d_{k}:=\left\langle h_{i_{k}}, s_{i_{k+1}} \cdots s_{i_{\ell}} \lambda\right\rangle$.
Hence Φ_{i} gives rise to an injective algebra homomorphism

$$
\Phi_{i}: \mathbf{A}_{q}\left[N_{-}^{w}\right] \rightarrow L_{i}
$$

The quantum Chamber Ansatz

Theorem (O)

Let $w \in W, \boldsymbol{i}=\left(i_{1}, \ldots, i_{\ell}\right) \in I(w)$ and $k \in\{1, \ldots, \ell\}$. Then

$$
\left(\Phi_{i} \circ \eta_{w, q}^{-1}\right)\left(\underline{D_{w_{\leq k} \varpi_{i_{k}}, \varpi_{i_{k}}}}\right)=\left(\prod_{j=1}^{k} q_{i_{j}}^{d_{j}\left(d_{j}+1\right) / 2}\right) t_{1}^{-d_{1}} t_{2}^{-d_{2}} \cdots t_{k}^{-d_{k}},
$$

where $d_{j}:=\left\langle h_{i_{j}}, s_{i_{j+1}} \cdots s_{i_{k}} \varpi_{i_{k}}\right\rangle(j=1, \ldots, k)$. Denote this element by $D_{w_{\leq k} \varpi_{i_{k}}, \varpi_{i_{k}}}^{\prime(i)} \in L_{i}$.

Corollary

Let $\boldsymbol{i}=\left(i_{1}, \ldots, i_{\ell}\right) \in I(w)$. Then, for $k \in\{1, \ldots, \ell\}$,

$$
t_{k} \simeq\left(D_{w_{\leq k-1} \varpi_{i_{k}}, \varpi_{i_{k}}}^{\prime(i)}\right)^{-1}\left(D_{w_{\leq k} \varpi_{i_{k}}, \varpi_{i_{k}}}^{\prime(i)}\right)^{-1} \prod_{j \in I \backslash\left\{i_{k}\right\}}\left(D_{w_{\leq k} \varpi_{j}, \varpi_{j}}^{\prime(i)}\right)^{-a_{j, i_{k}}}
$$

here the right-hand side is determined up to powers of q.

Relation with GLS theory

Let $Q=\left(Q_{0}, Q_{1}, s, t\right)$ be a finite quiver without oriented cycles. From now on, we assume that \mathfrak{g} is a symmetric Kac-Moody Lie algebra associated with $Q\left(Q_{0}=I\right)$. Denote by Λ the preprojective algebra corresponding to Q, that is,

$$
\Lambda:=\mathbb{C} \bar{Q} /\left(\sum_{a \in Q_{1}}\left(a^{*} a-a a^{*}\right)\right)
$$

here $\mathbb{C} \bar{Q}$ is the path algebra of the double quiver of Q. For a nilpotent Λ-module X, we can define $\varphi_{X} \in \mathbb{C}\left[N_{-}^{w}\right]$ satisfying the following:

$$
\varphi_{X}\left(y_{i}\left(t_{1}, \ldots, t_{\ell}\right)\right)=\sum_{\boldsymbol{a}=\left(a_{1}, \ldots, a_{\ell}\right) \in \mathbb{Z}_{\geq 0}^{\ell}} \chi\left(\mathcal{F}_{i, a, X}\right) t_{1}^{a_{1}} \cdots t_{\ell}^{a_{\ell}}
$$

here $\boldsymbol{i} \in I(w)$, χ denotes the Euler characteristic, and $\mathcal{F}_{\boldsymbol{i}, \boldsymbol{a}, X}$ is the projective variety of flags $X_{\bullet}=\left(X=X_{0} \supset X_{1} \supset \cdots \supset X_{\ell}=0\right)$ of submodules of X such that $X_{k-1} / X_{k} \simeq S_{i_{k}}^{a_{k}}$ for $1 \leqq k \leq \ell$ (Lusztig),

Relation with GLS theory (2)

Buan-lyama-Reiten-Scott have constructed a 2-Calabi-Yau Frobenius subcategory \mathcal{C}_{w} of Λ-modules, and Geiß-Leclerc-Schröer have proved that

$$
\mathbb{C}\left[N_{-}^{w}\right]=\operatorname{span}_{\mathbb{C}}\left\{\varphi_{X} \mid X \in \mathcal{C}_{w}\right\}\left[\left\{\varphi_{I} \mid I: \mathcal{C}_{w} \text {-injective-projective }\right\}^{-1}\right] .
$$

Note that an object is projective in \mathcal{C}_{w} (\mathcal{C}_{w}-projective) if and only if it is injective in $\mathcal{C}_{w}\left(\mathcal{C}_{w}\right.$-injective) since \mathcal{C}_{w} is Frobenius.
For $X \in \mathcal{C}_{w}$, denote by $I(X)$ the injective hull of X in \mathcal{C}_{w}, and by $\Omega_{w}^{-1}(X)$ the cokernel of $X \rightarrow I(X)$.

$$
0 \rightarrow X \rightarrow I(X) \rightarrow \Omega_{w}^{-1}(X) \rightarrow 0
$$

Relation with GLS theory (3)

Theorem (GLS)

Let $w \in W$. For $X \in \mathcal{C}_{w}, \eta_{w}^{*}\left(\varphi_{X}\right)=\varphi_{I(X)}^{-1} \varphi_{\Omega_{w}^{-1}(X)}$.
GLS have also constructed the algebra $\mathbf{A}_{q}\left[N^{w}\right]$ from \mathcal{C}_{w} and constructed a q-analogue of φ_{M}, denoted by Y_{M}, for every reachable rigid module M. By using the theorem above, we obtain the following:

Theorem (Kimura-O)

Let $w \in W$. For a reachable rigid module M,

$$
\eta_{w, q}\left(Y_{M}\right) \simeq Y_{I(M)}^{-1} Y_{\Omega_{w}^{-1}(M)}
$$

Corollary

Let M as above. Then $Y_{M} \in \mathbf{B}^{\text {up }}$ if and only if $Y_{\Omega_{w}^{-1}(M)} \in \mathbf{B}^{\mathrm{up}}$.

