Twist maps on quantum unipotent cells and the Chamber Ansatz

Hironori Oya

The University of Tokyo

Part of this work is joint with Yoshiyuki Kimura Oberseminar Algebra, 11/10/2016

Introduction

Aims of this talk:

Establish a quantum analogue of "the Chamber Ansatz".

Classical (q = 1) Factorization problem and the Chamber Ansatz: Consider the following map:

$$y_i : (\mathbb{C}^{\times})^{\ell} \to N_{-}^{w}$$

$$(t_1, \dots, t_{\ell}) \longmapsto \exp(t_1 F_{i_1}) \cdots \exp(t_{\ell} F_{i_{\ell}}).$$

Here i a reduced word of w, and $N_-^w := N_- \cap B_+ w B_+$ unipotent cell. (In fact, This gives a birational isomorphism from \mathbb{C}^ℓ to a Schubert cell X(w).)

Problem

Describe the inverse birational isomorphism y_i^{-1} .

Introduction (2)

Berenstein-Zelevinsky (1997) gives formulae for y_i^{-1} , called "the Chamber Ansatz". The key tool is a twist map $\eta_w^*\colon \mathbb{C}[N_-^w]\to \mathbb{C}[N_-^w]$. By the way, there are known q-analogues of $\mathbb{C}[N_-^w]$ and y_i . The following are the main result.

Theorem (Kimura-O)

There exists "q-analogue" of the twist map η_w^* . Moreover quantum twist maps preserve dual canonical bases.

Theorem (O)

The Chamber Ansatz formulae also hold in quantum settings by using quantum twist maps above.

The Chamber Ansatz

Let

- \mathfrak{g} a semisimple Lie algebra over \mathbb{C} , $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ triangular decomposition (fixed),
- $\{E_i, F_i, H_i \mid i \in I\}$ Chevalley generators of \mathfrak{g} , $A = (a_{ij})_{i,j \in I}$ the Cartan matrix (i.e. $[H_i, E_j] = a_{ij}E_j, \ldots$),
- G connected simply connected algebraic group (over \mathbb{C}) with $\operatorname{Lie} G = \mathfrak{g}$,
- N_- , H, N_+ closed subgroups of G such that $\operatorname{Lie} N_- = \mathfrak{n}^-$, $\operatorname{Lie} H = \mathfrak{h}$, $\operatorname{Lie} N_+ = \mathfrak{n}^+$,
- $B_- := N_- H$, $B_+ := H N_+$ Borel subgroups,
- $x_i(t) = \exp(tE_i)$, $y_i(t) = \exp(tF_i)$ 1-parameter subgroups corresponding to E_i , F_i ,
- $W := N_G(H)/H$ Weyl group, e its unit, $\{s_i \mid i \in I\}$ simple reflections, $\ell(w)$ the length of $w \in W$,

The Chamber Ansatz

Let \mathfrak{g} , G, N_{\pm} , H, B_{\pm} , $x_i(t)$, $y_i(t)$, W standard notation.

- $I(w) := \{(i_1, \dots, i_{\ell(w)}) \in I^{\ell(w)} \mid w = s_{i_1} \cdots s_{i_{\ell(w)}}\}$ the set of reduced words of $w \in W$,
- $\overline{s}_i := x_i(-1)y_i(1)x_i(-1)$ $(i \in I)$, $\overline{w} := \overline{s}_{i_1} \cdots \overline{s}_{i_\ell}$ $((i_1, \dots, i_\ell) \in I(w))$, In fact, \overline{w} does not depend on the choice of $(i_1, \dots, i_\ell) \in I(w)$,
- $\varpi_i \in \operatorname{Hom}_{\operatorname{alg.grp.}}(H,\mathbb{C}^{\times})$ fundamental weight corresponding to $i \in I$,
- $G_0:=N_-HN_+$, $g=[g]_-[g]_0[g]_+$ $(g\in G_0)$ the corresponding decomposition,

The Chamber Ansatz

Let \mathfrak{g} , G, N_{\pm} , H, B_{\pm} , $x_i(t)$, $y_i(t)$, W, I(w), \overline{w} , $\overline{\omega}_i$ standard notation. Set $G_0:=N_-HN_+$, $g=[g]_-[g]_0[g]_+$ ($g\in G_0$).

Definition (Generalized minors)

For $i \in I$, denote by $\Delta_{\varpi_i,\varpi_i}$ the regular function on G whose restriction to the open dense set G_0 is given by

$$\Delta_{\varpi_i,\varpi_i}(g) := \varpi_i([g]_0)$$

For $w_1, w_2 \in W$, define $\Delta_{w_1\varpi_i, w_2\varpi_i} \in \mathbb{C}[G]$ by

$$\Delta_{w_1 \varpi_i, w_2 \varpi_i}(g) = \Delta_{\varpi_i, \varpi_i}(\overline{w_1}^{-1} g \overline{w_2})$$

These elements are called generalized minors.

The Chamber Ansatz (2)

For $w \in W$, set $N_-^w := N_- \cap B_+ \bar{w} B_+$ unipotent cell.

Fact (Twist maps [Berenstein-Zelevinsky])

We can define a biregular isomorphism $\eta_w \colon N_-^w \to N_-^w$ by

$$\eta_w(z) := [z^T \overline{w}]_-.$$

Recall the map

$$y_i : (\mathbb{C}^{\times})^{\ell} \rightarrow N_{\underline{-}}^{w}$$

$$(t_1, \dots, t_{\ell}) \longmapsto y_{i_1}(t_1) \cdots y_{i_{\ell}}(t_{\ell}).$$

Here $i = (i_1, ..., i_{\ell}) \in I(w)$.

The Chamber Ansatz (2)

For $w \in W$, set $N_-^w := N_- \cap B_+ \bar{w} B_+$ unipotent cell.

Fact (Twist maps [Berenstein-Zelevinsky])

We can define a biregular isomorphism $\eta_w \colon N_-^w \to N_-^w$ by

$$\eta_w(z) := [z^T \overline{w}]_-.$$

Theorem (Berenstein-Zelevinsky)

Let
$$i = (i_1, \ldots, i_\ell) \in I(w)$$
. For $k \in \{1, \ldots, \ell\}$, set $w_{\leq k} := s_{i_1} \cdots s_{i_k}$. Set $y = y_i(t_1, \ldots, t_\ell)$. Then

$$t_k = \frac{\prod_{j \in I \setminus \{i_k\}} \Delta_{w_{\leq k}\varpi_j, \varpi_j} (\eta_w^{-1}(y))^{-a_{j,i_k}}}{\Delta_{w_{\leq k-1}\varpi_{i_k}, \varpi_{i_k}} (\eta_w^{-1}(y)) \Delta_{w_{\leq k}\varpi_{i_k}, \varpi_{i_k}} (\eta_w^{-1}(y))}$$

for $k \in \{1, ..., \ell\}$.

This formula is called the Chamber Ansatz.

q-analogue

From now on, we consider a q-analogue of the theorem above. In the settings of q-analogues, we do not have "actual group" but only have "coordinate rings". Hence we should consider the problem above in terms of coordinate rings.

The map $y_{m{i}}^*$ induces an injective algebra homomorphism

$$y_{\boldsymbol{i}}^* \colon \mathbb{C}[N_-^w] \to \mathbb{C}[t_1^{\pm 1}, \dots, t_\ell^{\pm}].$$

The twist map η_w induces the algebra automorphism

$$\eta_w^* \colon \mathbb{C}[N_-^w] \to \mathbb{C}[N_-^w].$$

The q-analogue of the former is known as a Feigin homomorphism (explained later). Moreover, by using (the restriction of) generalized minors of the form $\Delta_{w'\varpi_i,\varpi_i}$, we can easily check the following formula;

$$\eta_w^*(\Delta_{w'\varpi_i,\varpi_i}) = \Delta_{w\varpi_i,\varpi_i}^{-1} \Delta_{w\varpi_i,w'\varpi_i}.$$

Note: $\Delta_{w'\varpi_i,\varpi_i}$, $\Delta_{w\varpi_i,\varpi_i}^{-1}\Delta_{w\varpi_i,w'\varpi_i} \in \text{(dual canonical bases)}$.

Setup

Notation

Let

- $\mathfrak{g} = \mathfrak{n}^+ \oplus \mathfrak{h} \oplus \mathfrak{n}^-$ a symmetrizable Kac-Moody Lie algebra(\supset finite dimensional simple Lie algebra) over $\mathbb C$ with (fixed) triangular decomposition,
- $\{\alpha_i\}_{i\in I}$ the simple roots of \mathfrak{g} , $\{h_i\}_{i\in I}$ the simple coroots of \mathfrak{g} ,
- P a \mathbb{Z} -lattice (weight lattice) of \mathfrak{h}^* and $P^* := \operatorname{Hom}_{\mathbb{Z}}(P, \mathbb{Z}) \subset \mathfrak{h}$ such that $\{\alpha_i\}_{i \in I} \subset P$ and $\{h_i\}_{i \in I} \subset P^*$,
- $P_+ := \{ \lambda \in P \mid \langle \lambda, \alpha_i^{\vee} \rangle \geq 0 \text{ for all } i \in I \}. \text{ Set } \langle \varpi_i, h_j \rangle = \delta_{ij}.$
- W the Weyl group of \mathfrak{g} $(W \curvearrowright P, P^*)$,
- I(w) the set of reduced words of $w \in W$,
- $(-,-): P \times P \to \mathbb{Q}$ a \mathbb{Q} -valued (W-invariant) symmetric \mathbb{Z} -bilinear form on P satisfying the following conditions: $(\alpha_i, \alpha_i) \in 2\mathbb{Z}_{>0}, \ \langle \lambda, h_i \rangle = 2 \ (\lambda, \alpha_i) \ / \ (\alpha_i, \alpha_i) \ \text{ for } i \in I, \ \lambda \in P.$

Quantized enveloping algebras

Definition

The quantized enveloping algebra $U_q (:= U_q(\mathfrak{g}))$ over $\mathbb{Q}(q)$ is the $\mathbb{Q}(q)$ -algebra generated by

$$e_i, f_i \ (i \in I), \ q^h \ (h \in P^*),$$

with the following relations:

(i)
$$q^0 = 1$$
, $q^h q^{h'} = q^{h+h'}$.

$$(ii) q^h e_i = q^{\langle h, \alpha_i \rangle} e_i q^h, \ q^h f_i = q^{-\langle h, \alpha_i \rangle} f_i q^h,$$

(ii)
$$q^*e_i = q^{(i)}e_i q^i, q^i f_i = q^{(i)}e_i f_i q^i,$$

(iii)
$$[e_i, f_j] = \delta_{ij} \frac{t_i - t_i^{-1}}{q_i - q_i^{-1}}$$
 where $q_i := q^{\frac{(\alpha_i, \alpha_i)}{2}}$ and $t_i := q^{\frac{(\alpha_i, \alpha_i)}{2}h_i}$,

(iv)
$$\sum_{k=0}^{1-\langle h_i,\alpha_j\rangle} (-1)^k x_i^{(k)} x_j x_i^{(1-\langle h_i,\alpha_j\rangle-k)} = 0$$
 for $i \neq j$ $(x=e,f)$,

where
$$x_i^{(n)}:=x_i^n/[n]_i!, \ [n]_i!:=\prod_{k=1}^n(q_i^k-q_i^{-k})/(q_i-q_i^{-1}).$$

Quantized enveloping algebras

Definition

The quantized enveloping algebra $U_q(:=U_q(\mathfrak{g}))$ over $\mathbb{Q}(q)$ is the $\mathbb{Q}(q)$ -algebra generated by

$$e_i, f_i \ (i \in I), \ q^h \ (h \in P^*),$$

Relations: $q^h e_i = q^{\langle \alpha_i, h \rangle} e_i q^h$, q-Serre relations, . . . Let \mathbf{U}_q^- be the subalgebra of \mathbf{U}_q generated by f_i 's.

Hopf algebra structure of \mathbf{U}_q

$$\Delta(e_i) = e_i \otimes t_i^{-1} + 1 \otimes e_i, \ \Delta(f_i) = f_i \otimes 1 + t_i \otimes f_i, \ \Delta(q^h) = q^h \otimes q^h,$$
$$\varepsilon(e_i) = \varepsilon(f_i) = 0, \varepsilon(q^h) = 1, \exists \mathsf{antipode} \ S.$$

Quantized enveloping algebras

Definition

The quantized enveloping algebra $U_q(:=U_q(\mathfrak{g}))$ over $\mathbb{Q}(q)$ is the $\mathbb{Q}(q)$ -algebra generated by

$$e_i, f_i \ (i \in I), \ q^h \ (h \in P^*),$$

Relations: $q^h e_i = q^{\langle \alpha_i, h \rangle} e_i q^h$, q-Serre relations, . . . Let \mathbf{U}_q^- be the subalgebra of \mathbf{U}_q generated by f_i 's.

Hopf algebra structure of \mathbf{U}_q (Δ , ε , S)

Let $\bar{} : \mathbf{U}_q \to \mathbf{U}_q$ be the \mathbb{Q} -algebra involution defined by

$$\overline{q} = q^{-1}, \qquad \overline{e_i} = e_i, \qquad \overline{f_i} = f_i, \qquad \overline{q^h} = q^{-h}.$$

Let $(-)^T \colon \mathbf{U}_q o \mathbf{U}_q$ be the $\mathbb{Q}\left(q\right)$ -algebra anti-involutions defined by

$$(e_i)^T = f_i,$$
 $(f_i)^T = e_i,$ $(q^h)^T = q^h.$

Canonical bases

Review the theory of canonical bases due to Lusztig and Kashiwara: Denote by $\mathbf{U}_{\mathbb{Q}[q^{\pm 1}]}^-$ the $\mathbb{Q}[q^{\pm 1}]$ -subalgebra of \mathbf{U}_q^- generated by the elements $\{f_i^{(n)} \mid i \in I, n \in \mathbb{Z}_{\geq 0}\}$. Then there exists a free \mathcal{A}_0 -submodule $\mathscr{L}(\infty)$ of \mathbf{U}_q^- such that

$$\begin{array}{cccc} \mathbf{U}_{\mathbb{Q}[q^{\pm 1}]}^{-} \cap \mathscr{L}(\infty) \cap \overline{\mathscr{L}(\infty)} & \xrightarrow{\mathrm{projection}} & \mathscr{L}(\infty)/q\mathscr{L}(\infty) \\ \mathbf{B}^{\mathrm{low}} := \{G^{\mathrm{low}}(b) \mid b \in \mathscr{B}(\infty)\} & \longmapsto & \mathscr{B}(\infty) \end{array}$$

is the isomorphism of \mathbb{Q} -vector spaces. Moreover we can construct a "special" \mathbb{Q} -basis $\mathscr{B}(\infty)$ of $\mathscr{L}(\infty)/q\mathscr{L}(\infty)$. The inverse image of $\mathscr{B}(\infty)$ under this map is called the canonical bases $\mathbf{B}^{\mathrm{low}}$ of \mathbf{U}_q^- . In fact, $\mathbf{B}^{\mathrm{low}} = \{G^{\mathrm{low}}(b) \mid b \in \mathscr{B}(\infty)\}$ is a $\mathbb{Q}[q^{\pm 1}]$ -basis of $\mathbf{U}_{\mathbb{Q}[q^{\pm 1}]}^-$. For $b \in \mathscr{B}(\infty)$. $\overline{G^{\mathrm{low}}(b)} = G^{\mathrm{low}}(b)$ (bar-invariance property).

Dual canonical bases

Definition

There exists a unique nondegenerate symmetric $\mathbb{Q}(q)$ -bilinear form $(\ ,\)_L\colon \mathbf{U}_q^-\times \mathbf{U}_q^-\to \mathbb{Q}(q)$ such that

$$(1,1)_L = 1,$$
 $(f_i x, y)_L = \frac{1}{1 - q_i^2} (x, e_i'(y))_L.$

where $e_i' \colon \mathbf{U}_q^- o \mathbf{U}_q^-$ is the $\mathbb{Q}(q)$ -linear map given by

$$e'_{i}(xy) = e'_{i}(x) y + q_{i}^{\langle \operatorname{wt} x, h_{i} \rangle} x e'_{i}(y), \quad e'_{i}(f_{j}) = \delta_{ij},$$

for homogeneous elements $x,y\in \mathbf{U}_q^-.$

Dual canonical bases

Definition

There exists a unique nondegenerate symmetric $\mathbb{Q}(q)$ -bilinear form $(\ ,\)_L\colon \mathbf{U}_q^-\times \mathbf{U}_q^-\to \mathbb{Q}(q).$

Denote by \mathbf{B}^{up} the basis of \mathbf{U}_q^- dual to $\mathbf{B}^{\mathrm{low}}$ with respect to the bilinear form $(\ ,\)_L$, that is, $\mathbf{B}^{\mathrm{up}}=\{G^{\mathrm{up}}(b)\mid b\in\mathscr{B}(\infty)\}$ such that

$$(G^{\text{low}}(b), G^{\text{up}}(b'))_L = \delta_{b,b'} \text{ for } b, b' \in \mathscr{B}(\infty).$$

Definition (The dual bar-involution)

Define \mathbb{Q} -linear map $\sigma\colon \mathbf{U}_q^-\to \mathbf{U}_q^-, x\mapsto \sigma\left(x\right)=\sigma_L\left(x\right)$ by

$$(\sigma\left(x\right),y)_{L}=\overline{(x,\overline{y})}_{L}\text{ for arbitrary }y\in\mathbf{U}_{q}^{-}.$$

For $b \in \mathcal{B}(\infty)$, $\sigma(G^{\text{up}}(b)) = G^{\text{up}}(b)$ (dual bar-invariance property).

Specialization

Set

$$\mathbf{A}_{\mathbb{Q}[q^{\pm 1}]}[N_{-}] := \{ x \in \mathbf{U}_{q}^{-} \mid (x, \mathbf{U}_{\mathbb{Q}[q^{\pm 1}]}^{-})_{L} \in \mathbb{Q}[q^{\pm 1}] \} = \sum_{b \in \mathscr{B}(\infty)} \mathbb{Q}[q^{\pm 1}] G^{\mathrm{up}}(b).$$

Then $\mathbf{A}_{\mathbb{Q}[q^{\pm 1}]}[N_{-}]$ is a $\mathbb{Q}[q^{\pm 1}]$ -subalgebra of \mathbf{U}_{a}^{-} . Specialization:

Here $(\mathbf{U}(\mathfrak{n}^-))^*_{gr}$ denotes the graded dual of $\mathbf{U}(\mathfrak{n}^-)$. Hence we can regard \mathbf{U}_q^- as a q-analogue of the coordinate ring $\mathbb{C}[N_-]$ if we take the dual canonical basis into account.

Quantum closed unipotent cell

Proposition (Kashiwara)

For $w \in W$ and $\boldsymbol{i} = (i_1, \dots, i_\ell) \in I(w)$, set

$$\mathbf{U}_{q,w}^{-} := \sum_{a_1,\cdots,a_{\ell}} \mathbb{Q}\left(q\right) f_{i_1}^{a_1} \cdots f_{i_{\ell}}^{a_{\ell}}.$$

Then the following hold:

- (1) The subspace $\mathbf{U}_{q,w}^-$ does not depend on the choice of $i \in I(w)$.
- (2) Set $(\mathbf{U}_{q,w}^-)^{\perp} := \{ x \in \mathbf{U}_q^- \mid (x, \mathbf{U}_{q,w}^-)_L = 0 \}$. Then $(\mathbf{U}_{q,w}^-)^{\perp}$ is a two-sided ideal of \mathbf{U}_q^- .
- (3) $(\mathbf{U}_{q,w}^-)^{\perp} \cap \mathbf{B}^{\mathrm{up}}$ is a basis of $(\mathbf{U}_{q,w}^-)^{\perp}$ (equivalently, $\mathbf{U}_{q,w}^- \cap \mathbf{B}^{\mathrm{low}}$ is a basis of $\mathbf{U}_{q,w}^-$).

Quantum closed unipotent cell (2)

Definition (Quantum closed unipotent cell)

For $w \in W$, set

$$\mathbf{A}_q[\overline{N_-^w}] := \mathbf{U}_q^-/(\mathbf{U}_{q,w}^-)^{\perp}.$$

This is an algebra, called a quantum closed unipotent cell, by the proposition above.

By the proposition (3) above, the subset of \mathbf{B}^{up} induces a basis of $\mathbf{A}_q[\overline{N_-^w}]$. Denote by $\mathscr{B}_w(\infty)$ the corresponding subset of $\mathscr{B}(\infty)$ (called a Demazure crystal). The natural projection $\mathbf{U}_q^- \to \mathbf{A}_q[\overline{N_-^w}]$ will be described as $x \mapsto \underline{x}$. In fact, we have

$$\mathbf{A}_{\mathbb{Q}[q^{\pm 1}]}[\overline{N_{-}^{w}}] := \sum_{b \in \mathscr{B}_{w}(\infty)} \mathbb{Q}[q^{\pm 1}] \underline{G^{\mathrm{up}}(b)} \xrightarrow{\text{``}q \to 1\text{''}} \mathbb{C}[\overline{N_{-}^{w}}].$$

Unipotent quantum minors

For $\lambda \in P_+$, denote by $V(\lambda)$ the integrable highest weight \mathbf{U}_q -module generated by a highest weight vector u_λ of weight λ . For $w \in W$ and $\boldsymbol{i} \in I(w)$, set

$$u_{w\lambda} = f_{i_1}^{(\langle h_{i_1}, s_{i_2} \cdots s_{i_\ell} \lambda \rangle)} \cdots f_{i_{\ell-1}}^{(\langle h_{i_{\ell-1}}, s_{i_\ell} \lambda \rangle)} f_{i_\ell}^{(\langle h_{i_\ell}, \lambda \rangle)} . u_{\lambda}.$$

There exists a unique nondegenerate and symmetric bilinear form $(\ ,\)_{\lambda}\colon V(\lambda)\times V(\lambda)\to \mathbb{Q}(q)$ such that

$$(u_{\lambda}, u_{\lambda})_{\lambda} = 1$$
 $(x.v_1, v_2)_{\lambda} = (v_1, x^T.v_2)_{\lambda}$

for $v_1, v_2 \in V(\lambda)$ and $x \in \mathbf{U}_q$.

Definition (Unipotent quantum minors)

For $\lambda \in P_+$ and $v_1, v_2 \in V(\lambda)$, define an element $D_{v_1, v_2} \in \mathbf{U}_q^-$ by

$$(D_{v_1,v_2},x)_L=(v_1,x.v_2)_\lambda$$
 for arbitrary $x\in \mathbf{U}_q^-$.

For $w_1, w_2 \in W$, write $D_{w_1\lambda, w_2\lambda} := D_{u_{w_1\lambda}, u_{w_2\lambda}}$.

Quantum unipotent cell

Proposition (Kashiwara)

For $\lambda \in P_+$, $w_1, w_2 \in W$, we have $D_{w_1\lambda, w_2\lambda} \in \mathbf{B}^{\mathrm{up}} \coprod \{0\}$.

Proposition

Let $w \in W$. Then $\underline{\mathcal{D}_w} := q^{\mathbb{Z}} \{\underline{D_{w\lambda,\lambda}}\}_{\lambda \in P_+}$ is an Ore set of $\mathbf{A}_q[\overline{N_-^w}]$ consisting of q-central elements.

Definition

For $w \in W$, we can consider the algebras of fractions

$$\mathbf{A}_q[N_-^w] := \mathbf{A}_q[\overline{N_-^w}][\underline{\mathcal{D}_w^{-1}}]$$

by the proposition above. This algebra is called a quantum unipotent cell.

Quantum twist maps

Proposition

Let $w \in W$. Then

$$\tilde{\mathbf{B}}_w^{\mathrm{up}} := \{q^{(\lambda, \operatorname{wt} b + \lambda - w\lambda)} \underline{D_{w\lambda, \lambda}}^{-1} \underline{G^{\mathrm{up}}(b)} \mid \lambda \in P_+, b \in \mathscr{B}_w(\infty)\}$$

forms a basis of $A_a[N_-^w]$. We call \hat{B}_w^{up} the dual canonical bases of $\mathbf{A}_{a}[N_{-}^{w}].$

The dual bar involution σ on \mathbf{U}_{q}^{-} induces the \mathbb{Q} -linear isomorphism $\sigma \colon \mathbf{A}_a[\overline{N_-^w}] \to \mathbf{A}_a[\overline{N_-^w}]$, and this is extended to the \mathbb{Q} -linear isomorphism $\sigma \colon \mathbf{A}_{q}[N_{-}^{w}] \to \mathbf{A}_{q}[N_{-}^{w}]$ satisfying

$$\sigma(xy) = q^{(\text{wt } x, \text{wt } y)} \sigma(y) \sigma(x)$$

for homogeneous elements $x, y \in \mathbf{A}_q[N_-^w]$ (We can naturally define the Q-graded structure on $\mathbf{A}_{q}[N_{-}^{w}]$).

Then every element of $\tilde{\mathbf{B}}_{w}^{\mathrm{up}}$ is fixed by σ .

Quantum twist maps (2)

Theorem (Kimura-O)

Let $w \in W$. Then there exists the automorphism of the $\mathbb{Q}(q)$ -algebra

$$\eta_{w,q} \colon \mathbf{A}_q[N_-^w] \to \mathbf{A}_q[N_-^w],$$

given by

$$\underline{D_{v,u_{\lambda}}} \mapsto q^{-(\lambda,\operatorname{wt} v - \lambda)} \underline{D_{w\lambda,\lambda}}^{-1} \underline{D_{u_{w\lambda},v}}$$

for all $\lambda \in P_+$ and weight vectors $v \in V(\lambda)$. Moreover $\eta_{w,q}$ is restricted to the permutation of $\tilde{\mathbf{B}}_w^{\mathrm{up}}$.

We call $\eta_{w,q}$ a quantum twist map. For example we have

$$\eta_{w,q}(D_{w'\varpi_i,\varpi_i}) = q^{-(\varpi_i,w'\varpi_i-\varpi_i)} \underline{D_{w\varpi_i,\varpi_i}}^{-1} \underline{D_{w\varpi_i,w'\varpi_i}}.$$

(cf.
$$\eta_w^*(\Delta_{w'\varpi_i,\varpi_i}) = \Delta_{w\varpi_i,\varpi_i}^{-1} \Delta_{w\varpi_i,w'\varpi_i}$$
.)

Feigin homomorphisms

Definition (Feigin homomorphisms)

Let $i=(i_1,\ldots,i_\ell)\in I^\ell$. The Laurent q-polynomial algebra L_i is the unital associative $\mathbb{Q}(q)$ -algebra generated by $t_1^{\pm 1},\ldots,t_\ell^{\pm 1}$ subject to the relations;

$$\begin{split} t_j t_k &= q^{(\alpha_{i_j}, \alpha_{i_k})} t_k t_j \text{ for } 1 \leq j < k \leq \ell, \\ t_k t_k^{-1} &= t_k^{-1} t_k = 1 \text{ for } 1 \leq k \leq \ell. \end{split}$$

Then we can define the $\mathbb{Q}(q)$ -linear map $\Phi_i \colon \mathbf{U}_q^- \to L_i$ by

$$x \mapsto \sum_{\boldsymbol{a}=(a_1,\dots,a_\ell)\in\mathbb{Z}_{>0}^\ell} q_{\boldsymbol{i}}(\boldsymbol{a})(x, f_{i_1}^{(a_1)}\cdots f_{i_\ell}^{(a_\ell)})_L t_1^{a_1}\cdots t_\ell^{a_\ell},$$

where $q_i(a):=\prod_{k=1}^\ell q_{i_k}^{a_k(a_k-1)/2}$. Note that the all but finitely many summands in the right-hand side are zero. The map Φ_i is called a Feigin homomorphism.

Feigin homomorphisms (2)

Proposition (Berenstein)

- (1) For $i \in I^{\ell}$, the map Φ_i is a $\mathbb{Q}(q)$ -algebra homomorphism.
- (2) For $w \in W$ and $i \in I(w)$, we have $\operatorname{Ker} \Phi_i = (\mathbf{U}_{w,q}^-)^{\perp}$.
- (3) For $w \in W$, $\boldsymbol{i} = (i_1, \dots, i_\ell) \in I(w)$ and $\lambda \in P_+$, we have

$$\Phi_{\boldsymbol{i}}(D_{w\lambda,\lambda}) = q_{\boldsymbol{i}}(\boldsymbol{d})t_1^{d_1}\cdots t_\ell^{d_\ell}$$

where
$$d = (d_1, \ldots, d_\ell)$$
 with $d_k := \langle h_{i_k}, s_{i_{k+1}} \cdots s_{i_\ell} \lambda \rangle$.

Hence Φ_i gives rise to an injective algebra homomorphism

$$\Phi_i \colon \mathbf{A}_q[N_-^w] \to L_i.$$

The quantum Chamber Ansatz

Theorem (O)

Let $w \in W$, $i = (i_1, \dots, i_\ell) \in I(w)$ and $k \in \{1, \dots, \ell\}$. Then

$$(\Phi_{\pmb{i}} \circ \eta_{w,q}^{-1})(\underline{D_{w_{\leq k}\varpi_{i_k},\varpi_{i_k}}}) = \left(\prod_{j=1}^k q_{i_j}^{d_j(d_j+1)/2}\right) t_1^{-d_1} t_2^{-d_2} \cdots t_k^{-d_k},$$

where $d_j := \langle h_{i_j}, s_{i_{j+1}} \cdots s_{i_k} \varpi_{i_k} \rangle$ $(j = 1, \dots, k)$. Denote this element by $D'^{(i)}_{w <_k \varpi_{i_k}, \varpi_{i_k}} \in L_i$.

Corollary

$$\begin{split} \text{Let } & \textbf{i} = (i_1, \dots, i_\ell) \in I(w). \text{ Then, for } k \in \{1, \dots, \ell\}, \\ & t_k \simeq (D'^{(\textbf{i})}_{w_{\leq k-1}\varpi_{i_k}, \varpi_{i_k}})^{-1} (D'^{(\textbf{i})}_{w_{\leq k}\varpi_{i_k}, \varpi_{i_k}})^{-1} \prod_{j \in I \setminus \{i_k\}} (D'^{(\textbf{i})}_{w_{\leq k}\varpi_{j}, \varpi_{j}})^{-a_{j,i_k}}, \end{split}$$

here the right-hand side is determined up to powers of q.

Relation with GLS theory

Let $Q=(Q_0,Q_1,s,t)$ be a finite quiver without oriented cycles. From now on, we assume that $\mathfrak g$ is a symmetric Kac-Moody Lie algebra associated with Q $(Q_0=I)$. Denote by Λ the preprojective algebra corresponding to Q, that is,

$$\Lambda := \mathbb{C}\overline{Q}/(\sum_{a \in Q_1} (a^*a - aa^*)),$$

here $\mathbb{C}\overline{Q}$ is the path algebra of the double quiver of Q. For a nilpotent Λ -module X, we can define $\varphi_X\in\mathbb{C}[N_-^w]$ satisfying the following:

$$\varphi_X(y_i(t_1,\ldots,t_\ell)) = \sum_{\boldsymbol{a}=(a_1,\ldots,a_\ell)\in\mathbb{Z}_{>0}^\ell} \chi(\mathcal{F}_{i,\boldsymbol{a},X}) t_1^{a_1} \cdots t_\ell^{a_\ell},$$

here $i \in I(w)$, χ denotes the Euler characteristic, and $\mathcal{F}_{i,a,X}$ is the projective variety of flags $X_{\bullet} = (X = X_0 \supset X_1 \supset \cdots \supset X_{\ell} = 0)$ of submodules of X such that $X_{k-1}/X_k \simeq S_{i_k}^{a_k}$ for $1 \leq k \leq \ell$ (Lusztig).

Relation with GLS theory (2)

Buan-Iyama-Reiten-Scott have constructed a 2-Calabi-Yau Frobenius subcategory \mathcal{C}_w of Λ -modules, and Geiß-Leclerc-Schröer have proved that

$$\mathbb{C}[N_-^w] = \operatorname{span}_{\mathbb{C}}\{\varphi_X \mid X \in \mathcal{C}_w\}[\{\varphi_I \mid I \colon \mathcal{C}_w\text{-injective-projective}\}^{-1}].$$

Note that an object is projective in C_w (C_w -projective) if and only if it is injective in C_w (C_w -injective) since C_w is Frobenius.

For $X \in \mathcal{C}_w$, denote by I(X) the injective hull of X in \mathcal{C}_w , and by $\Omega_w^{-1}(X)$ the cokernel of $X \to I(X)$.

$$0 \to X \to I(X) \to \Omega_w^{-1}(X) \to 0.$$

Relation with GLS theory (3)

Theorem (GLS)

Let
$$w \in W$$
. For $X \in \mathcal{C}_w$, $\eta_w^*(\varphi_X) = \varphi_{I(X)}^{-1} \varphi_{\Omega_w^{-1}(X)}$.

GLS have also constructed the algebra $\mathbf{A}_q[N^w]$ from \mathcal{C}_w and constructed a q-analogue of φ_M , denoted by Y_M , for every reachable rigid module M. By using the theorem above, we obtain the following:

Theorem (Kimura-O)

Let $w \in W$. For a reachable rigid module M,

$$\eta_{w,q}(Y_M) \simeq Y_{I(M)}^{-1} Y_{\Omega_w^{-1}(M)}.$$

Corollary

Let M as above. Then $Y_M \in \mathbf{B}^{\mathrm{up}}$ if and only if $Y_{\Omega^{-1}_m(M)} \in \mathbf{B}^{\mathrm{up}}$.