Quantum Grothendieck ring isomorphisms for quantum affine algebras of type A and B

Hironori OYA

Université Paris Diderot, IMJ-PRG

Based on a joint work with David HERNANDEZ

Oberseminar Algebra Universität zu Köln, June 26, 2018

Motivation (1)

Topic : Finite dimensional representations of affine quantum groups

Question 1

Dimensions/q-characters of simple modules ?

- ∃ Classification of simple modules [Chari-Pressley 1990's] "Highest weight theory"
- However, there are NO known closed formulae of their dimensions and *q*-characters in general. (e.g. *A* analogue of Weyl-Kac character formulae...)

Question 2

Description of representation rings and their "deformations" ?

 Some (deformed) representation rings are known to be described nicely as (quantum) cluster algebras...

Hironori OYA (IMJ-PRG)

Motivation (2)

Question 1

Dimensions/q-characters of simple modules ?

- <u>ADE case</u> ∃ algorithm to compute them ! [Nakajima '04]
 "Kazhdan-Lusztig algorithm"
 - The tool is t-deformed q-character, and the geometric construction (via quiver varieties) of simple modules guarantees this algorithm.
- Arbitrary (untwisted) case [Hernandez '04]
 - ∃ t-deformed q-characters, defined algebraically
 (∄ geometry for non-symmetric cases)
 - Kazhdan-Lusztig algorithm gives conjectural *q*-characters of simple modules

However, they are still candidates in non-symmetric cases.

Motivation (3)

Question 2

Description of representation rings and their "deformations" ?

[Hernandez-Leclerc '10 –, Kang-Kashiwara-Kim-Oh '15, Oh-Suh '16] The category of finite dimensional modules of affine quantum groups has several interesting monoidal subcategories (C_Z, C_Z⁻, C_ℓ, ℓ ∈ Z, C_Q etc.), which are expected to be "monoidal categorifications" of cluster algebras (this fact is indeed proved in many cases).

Motivation (3)

Question 2

Description of representation rings and their "deformations" ?

- X = ADE case Let
 - $K_t(\mathcal{C}_{OX^{(1)}})$ the *t*-deformed Grothendieck ring (=quantum Grothendieck ring) of $\mathcal{C}_{\mathcal{O},\mathbf{X}_n^{(1)}}$ for type $\mathbf{X}_n^{(1)}$
 - $\mathcal{A}_n[N_-^{X_n}]$ the quantized coordinate algebra of the unipotent group of type X_n (\exists quantum cluster algebra structure !) (Each terminology will be explained later.)

Theorem (Hernandez-Leclerc '15)

 $K_t(\mathcal{C}_{\mathcal{Q},\mathbf{X}_n^{(1)}}) \simeq \mathcal{A}_v[N_-^{\mathbf{X}_n}], \left\{ \begin{array}{c} (q,t) \text{-characters of} \\ simple \ modules \end{array} \right\} \leftrightarrow dual \ canonical \ basis.$

Does it also hold in non-symmetric cases ?

Hironori OYA (IMJ-PRG)

Quantum Grothendieck ring isomorphisms

In this talk, we consider the case of type $B_n^{(1)}$. Let $\mathcal{C}_{\mathcal{Q},B_n^{(1)}}$ be the monoidal subcategory $\mathcal{C}_{\mathcal{Q}}$ for type $B_n^{(1)}$.

Theorem (Hernandez-O.)

$$\begin{array}{cccc} K_t(\mathcal{C}_{\mathcal{Q},\mathcal{B}_n^{(1)}}) &\simeq & \mathcal{A}_v[N_-^{\mathcal{A}_{2n-1}}] & \stackrel{[\mathsf{HL}]}{\simeq} & K_t(\mathcal{C}_{\mathcal{Q}',\mathcal{A}_{2n-1}^{(1)}}) \\ & \cup & & \cup & \\ \left\{\begin{array}{ccc} (q,t)\text{-}characters \ of} \\ simple \ modules \end{array}\right\} &\leftrightarrow \ dual \ canonical \ basis \ \xleftarrow{[\mathsf{HL}]} & \left\{\begin{array}{ccc} (q,t)\text{-}characters \ of} \\ simple \ modules \end{array}\right\} \end{array}$$

Remark

There are no known direct relations between the quantum affine algebras of type ${\rm B}_n^{(1)}$ and ${\rm A}_{2n-1}^{(1)}$ themselves.

In this talk, we consider the case of type $B_n^{(1)}$. Let $C_{\mathcal{Q},B_n^{(1)}}$ be the monoidal subcategory $C_{\mathcal{Q}}$ for type $B_n^{(1)}$.

Theorem (Hernandez-O.)

$$\begin{array}{cccc} K_t(\mathcal{C}_{\mathcal{Q},\mathcal{B}_n^{(1)}}) &\simeq & \mathcal{A}_v[N_-^{A_{2n-1}}] & \stackrel{[\mathsf{HL}]}{\simeq} & K_t(\mathcal{C}_{\mathcal{Q}',\mathcal{A}_{2n-1}^{(1)}}) \\ & \cup & & \cup & \\ \left\{\begin{array}{ccc} (q,t)\text{-}characters \ of} \\ simple \ modules \end{array}\right\} &\leftrightarrow \ dual \ canonical \ basis \ \xleftarrow{[\mathsf{HL}]} & \left\{\begin{array}{ccc} (q,t)\text{-}characters \ of} \\ simple \ modules \end{array}\right\} \end{array}$$

Kashiwara-Oh established an isomorphism between $K_{t=1}(\mathcal{C}_{\mathcal{Q}, \mathbb{B}_n^{(1)}})$ and $\mathbb{C}[N_-^{\mathcal{A}_{2n-1}}]$ by a different method. Combining this result with our theorem above, we obtain the following :

Let $\mathcal{C}_{\mathcal{Q}, B_n^{(1)}}$ be the monoidal subcategory $\mathcal{C}_{\mathcal{Q}}$ for type $B_n^{(1)}$.

Theorem (Hernandez-O.)

$$\begin{array}{cccc} K_t(\mathcal{C}_{\mathcal{Q},\mathcal{B}_n^{(1)}}) &\simeq & \mathcal{A}_v[N_-^{\mathcal{A}_{2n-1}}] & \stackrel{[\mathsf{HL}]}{\simeq} & K_t(\mathcal{C}_{\mathcal{Q}',\mathcal{A}_{2n-1}^{(1)}}) \\ & \cup & & \cup & \\ \left\{\begin{array}{ccc} (q,t)\text{-characters of} \\ simple \ modules \end{array}\right\} & \leftrightarrow & dual \ canonical \ basis & \xleftarrow{[\mathsf{HL}]} & \left\{\begin{array}{ccc} (q,t)\text{-characters of} \\ simple \ modules \end{array}\right\} \end{array}$$

Kashiwara-Oh established an isomorphism between $K_{t=1}(\mathcal{C}_{\mathcal{Q},B_n^{(1)}})$ and $\mathbb{C}[N_-^{A_{2n-1}}]$ by a different method. Combining this result with our theorem above, we obtain the following :

Theorem (Hernandez-O.)

The (q,t)-characters of simple modules in $\mathcal{C}_{\mathcal{Q},\mathbf{B}_n^{(1)}}$ specialize to the corresponding q-characters.

Let $\mathcal{C}_{\mathcal{Q}, \mathbf{B}_n^{(1)}}$ be the monoidal subcategory $\mathcal{C}_{\mathcal{Q}}$ for type $\mathbf{B}_n^{(1)}$.

Theorem (Hernandez-O.)

$$\begin{array}{cccc} K_t(\mathcal{C}_{\mathcal{Q},\mathcal{B}_n^{(1)}}) & \simeq & \mathcal{A}_v[N_-^{\mathcal{A}_{2n-1}}] & \cong & K_t(\mathcal{C}_{\mathcal{Q}',\mathcal{A}_{2n-1}^{(1)}}) \\ & \cup & & \cup & & \\ \left\{\begin{array}{ccc} (q,t)\text{-}characters \ of} \\ simple \ modules \end{array}\right\} & \leftrightarrow & dual \ canonical \ basis \ \xleftarrow{} \begin{bmatrix} \mathsf{HL} \\ (q,t)\text{-}characters \ of} \\ simple \ modules \end{bmatrix}$$

Theorem (Hernandez-O.)

The (q,t)-characters of simple modules in $\mathcal{C}_{\mathcal{Q},\mathbf{B}_n^{(1)}}$ specialize to the corresponding q-characters.

 \rightsquigarrow The Kazhdan-Lusztig algorithm gives "correct" answers in $\mathcal{C}_{\mathcal{Q}, \mathbf{B}_n^{(1)}}!$

Quantum affine algebras

Let

- $\bullet~\mathfrak{g}$ a finite dimensional simple Lie algebra / $\mathbb C$
- $\mathcal{Lg} := \mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}[t^{\pm 1}]$ its loop algebra $[X \otimes t^m, Y \otimes t^m] = [X, Y] \otimes t^{m+m'}$
- U_q(Lg) the Drinfeld-Jimbo quantum loop algebra / C with a parameter q ∈ C[×] not a root of unity generators : {k^{±1}_i, x[±]_{i,r}, h_{i,s} | i ∈ I, r ∈ Z, s ∈ Z \ {0}}

Properties

•
$$\mathcal{U}_q(\mathcal{L}\mathfrak{g})$$
 has a Hopf algebra structure.

•
$$\mathcal{U}_q(\mathfrak{g}) \underset{\text{Hopf alg.}}{\hookrightarrow} \mathcal{U}_q(\mathcal{L}\mathfrak{g}), e_i \mapsto x_{i,0}^+, f_i \mapsto x_{i,0}^-, k_i^{\pm 1} \mapsto k_i^{\pm 1}$$

Let C be the category of finite-dimensional $U_q(\mathcal{Lg})$ -modules of type 1 (i.e. the eigenvalues of the actions of $\{k_i \mid i \in I\}$ are of the form $q^m, m \in \mathbb{Z}$).

 $\mathsf{Remark}:\ \mathcal{C} \text{ is a non-semisimple abelian }\otimes\text{-category}.$

q-characters (1)

Let $V \in \mathcal{C}$. Frenkel-Reshetikhin showed that

{Generalized simultaneous eigenvalues of all $k_i^{\pm 1}, h_{i,s} \curvearrowright V$ } \longleftrightarrow {Laurent monomials m in $Y_{i,a}$'s $(i \in I, a \in \mathbb{C}^{\times})$ }

 $\rightsquigarrow V = \bigoplus_m V_m$, called the $\ell\text{-weight space decomposition.}$

 $Y_{i,a}$ is an "affine analogue" of e^{ϖ_i} , ϖ_i fundamental weight.

Define the q-character of V as

$$\chi_q(V) := \sum_m \dim(V_m)m.$$

Then χ_q defines an injective algebra homomorphism

$$\chi_q \colon K(\mathcal{C}) \to \mathbb{Z}[Y_{i,a}^{\pm 1} \mid i \in I, a \in \mathbb{C}^{\times}] =: \mathcal{Y}_{\mathbb{C}^{\times}},$$

here $K(\mathcal{C})$ be the Grothendieck ring of \mathcal{C} [Frenkel-Reshetikhin].

 $K(\mathcal{C})$ is commutative. (However sometimes $V \otimes W \not\simeq W \otimes V$ in \mathcal{C} .)

q-characters (2)

Set
$$\mathcal{B}_{\mathbb{C}^{\times}} := \left\{ \prod_{i \in I, a \in \mathbb{C}^{\times}} Y_{i,a}^{m_{i,a}} \mid m_{i,a} \ge 0 \right\} \subset \mathcal{Y}_{\mathbb{C}^{\times}}$$
 dominant monomials.

Classification of simple modules [Chari-Pressley]

There is a one-to-one correspondence :

 $\begin{array}{cccc} \{ \text{simple modules in } \mathcal{C} \} / \sim & \leftrightarrow & \mathcal{B}_{\mathbb{C}^{\times}} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & m \end{array}$

 \exists an "affine analogue" $A_{i,a} \in \mathcal{Y}_{\mathbb{C}^{\times}}$ of e^{α_i} , α_i simple root.

Type $A_n^{(1)}$

$$A_{i,a} = Y_{i,aq^{-1}} Y_{i,aq} Y_{i-1,a}^{-1} Y_{i+1,a}^{-1} \iff e^{\alpha_i} = e^{2\varpi_i - \varpi_{i-1} - \varpi_{i+1}})$$

(Y_{0,a} = Y_{n+1,a} := 1, e^{\varpi_0} = e^{\varpi_{n+1}} := 1.)

q-characters (2)

Set
$$\mathcal{B}_{\mathbb{C}^{\times}} := \left\{ \prod_{i \in I, a \in \mathbb{C}^{\times}} Y_{i,a}^{m_{i,a}} \mid m_{i,a} \ge 0 \right\} \subset \mathcal{Y}_{\mathbb{C}^{\times}}$$
 dominant monomials.

Classification of simple modules [Chari-Pressley]

There is a one-to-one correspondence :

 $\begin{cases} \text{simple modules in } \mathcal{C} \} / \sim & \leftrightarrow & \mathcal{B}_{\mathbb{C}^{\times}} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & m \end{cases}$

 \exists an "affine analogue" $A_{i,a} \in \mathcal{Y}_{\mathbb{C}^{\times}}$ of e^{α_i} , α_i simple root.

Type $B_n^{(1)}$

$$A_{i,a} = \begin{cases} Y_{i,aq^{-2}}Y_{i,aq^{2}}Y_{i-1,a}^{-1}Y_{i+1,a}^{-1} & \text{if } i \leq n-2\\ Y_{n-1,aq^{-2}}Y_{n-1,aq^{2}}Y_{n-2,a}^{-1}Y_{n,aq^{-1}}^{-1}Y_{n,aq}^{-1} & \text{if } i = n-1\\ Y_{n,aq^{-1}}Y_{n,aq}Y_{n-1,a}^{-1} & \text{if } i = n. \end{cases}$$

$$(Y_{0,a} := 1)$$

q-characters (2)

Set
$$\mathcal{B}_{\mathbb{C}^{\times}} := \left\{ \prod_{i \in I, a \in \mathbb{C}^{\times}} Y_{i,a}^{m_{i,a}} \mid m_{i,a} \ge 0 \right\} \subset \mathcal{Y}_{\mathbb{C}^{\times}}$$
 dominant monomials.

Classification of simple modules [Chari-Pressley]

There is a one-to-one correspondence :

 $\begin{array}{cccc} \{ \text{simple modules in } \mathcal{C} \} / \sim & \leftrightarrow & \mathcal{B}_{\mathbb{C}^{\times}} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & m \end{array}$

 \exists an "affine analogue" $A_{i,a} \in \mathcal{Y}_{\mathbb{C}^{\times}}$ of e^{α_i} , α_i simple root.

Define the partial ordering on the set of Laurent monomials in $\mathcal{Y}_{\mathbb{C}^{\times}}$ as

$$m \ge m' \iff m^{-1}m'$$
 is a product of $A_{i,a}^{-1}$'s.

Theorem (Frenkel-Mukhin)

 $\chi_q(L(m)) = m +$ (sum of terms lower than m), $\forall m \in \mathcal{B}_{\mathbb{C}^{\times}}$.

q-characters (3)

$$\begin{array}{l} \mathcal{C}_{\bullet} := & \text{the full subcategory of } \mathcal{C} \text{ such that} \\ \underline{object} : V \text{ with } \chi_q(V) \in \mathbb{Z}[Y_{i,q^r}^{\pm 1} \mid i \in I, r \in \mathbb{Z}] =: \mathcal{Y}. \end{array} \\ \hline \begin{array}{l} \text{operties} \\ \bullet \ \mathcal{C}_{\bullet} \text{ is a (non-semisimple) abelian } \otimes & \text{-subcategory.} \\ \bullet \ \mathcal{C} = \bigotimes_{a \in \mathbb{C}^{\times}/q^{\mathbb{Z}}} (\mathcal{C}_{\bullet})_a \ ((\mathcal{C}_{\bullet})_a \text{ is obtained from } \mathcal{C}_{\bullet} \text{ by shift of the spectral parameter by } a). \end{array}$$

From now on, we always work in $\mathcal{C}_{\bullet},$ and write

$$Y_{i,r} := Y_{i,q^r} \qquad A_{i,r} := A_{i,q^r} \qquad \mathcal{B} := \mathcal{B}_{\mathbb{C}^{\times}} \cap \mathcal{Y}.$$

Example

r

•
$$\mathfrak{g} = \mathfrak{sl}_2, I = \{1\}, \chi_q(L(Y_{1,r})) = Y_{1,r} + Y_{1,r+2}^{-1} = Y_{1,r}(1 + A_{1,r+1}^{-1})$$

•
$$\mathfrak{g} = \mathfrak{so}_5, I = \{1, 2\},\ \chi_q(L(Y_{1,r})) = Y_{1,r} + Y_{2,r+1}Y_{2,r+3}Y_{1,r+4}^{-1} + Y_{2,r+1}Y_{2,r+5}^{-1} + Y_{1,r+2}Y_{2,r+3}^{-1}Y_{2,r+5}^{-1} + Y_{1,r+6}^{-1}.$$

Hironori OYA (IMJ-PRG)

q-characters (3)

$$\begin{array}{l} \mathcal{C}_{\bullet} := & \text{the full subcategory of } \mathcal{C} \text{ such that} \\ \underline{\text{object}} : V \text{ with } \chi_q(V) \in \mathbb{Z}[Y_{i,q^r}^{\pm 1} \mid i \in I, r \in \mathbb{Z}] =: \mathcal{Y}. \\ \hline \\ \hline \\ \text{operties} \\ \hline \\ \mathcal{C}_{\bullet} \text{ is a (non-semisimple) abelian } \otimes & \text{-subcategory.} \\ \hline \\ \mathcal{C} = \bigotimes_{a \in \mathbb{C}^{\times}/q^{\mathbb{Z}}} (\mathcal{C}_{\bullet})_a \ ((\mathcal{C}_{\bullet})_a \text{ is obtained from } \mathcal{C}_{\bullet} \text{ by shift of the spectral parameter by } a). \\ \end{array}$$

From now on, we always work in \mathcal{C}_{\bullet} , and write

$$\begin{split} Y_{i,r} &:= Y_{i,q^r} \qquad A_{i,r} := A_{i,q^r} \qquad \mathcal{B} := \mathcal{B}_{\mathbb{C}^{\times}} \cap \mathcal{Y}.\\ \text{For } m &= \prod_{i \in I, r \in \mathbb{Z}} Y_{i,r}^{u_{i,r}} \in \mathcal{B}, \text{ a standard module is defined as}\\ M(m) &:= \overrightarrow{\bigotimes}_{r \in \mathbb{Z}} \left(\bigotimes_{i \in I} L(Y_{i,r})^{\otimes u_{i,r}} \right).\\ & \rightsquigarrow \{ [L(m)] \mid m \in \mathcal{B} \} \text{ and } \{ [M(m)] \mid m \in \mathcal{B} \} \text{ are } \mathbb{Z} \text{-bases of } K(\mathcal{C}_{\bullet})_{r \in \mathbb{Q}} \\ & \text{Hironori OYA} (\text{IMJ-PRG}) \qquad \text{Quantum Grothendieck ring isomorphisms} \qquad \text{June 26, 2018} \qquad 9/26 \end{split}$$

Quantum Grothendieck rings (1)

We follow Hernandez's algebraic construction of quantum Grothendieck rings here.

Remark

 \exists other (geometric) constructions given by Varagnolo-Vasserot and Nakajima for $\rm ADE$ cases, and all constructions produce equivalent rings in these cases.

First, we prepare a deformation \mathcal{Y}_t of the ambient Laurent polynomial ring \mathcal{Y} .

 $\rightsquigarrow \mathcal{Y}_t$ is a $\mathbb{Z}[t^{\pm 1/2}]\text{-algebra such that}$

- generators : $\widetilde{Y}_{i,r}$ $(i \in I, r \in \mathbb{Z})$ and their inverses $\widetilde{Y}_{i,r}^{-1}$
- <u>relations</u> : $\widetilde{Y}_{i,r}$'s mutually *t*-commute.

 $\mathsf{e.g.} \ \ \mathbf{B}_2^{(1)}\mathsf{-case}: \ \widetilde{Y}_{1,r+2}\widetilde{Y}_{1,r} = t\widetilde{Y}_{1,r}\widetilde{Y}_{1,r+2}, \ \widetilde{Y}_{1,r+5}\widetilde{Y}_{2,r} = t^{-1}\widetilde{Y}_{2,r}\widetilde{Y}_{1,r+5}, \ldots$

Quantum Grothendieck rings (2)

There exists a \mathbb{Z} -algebra homomorphism $ev_{t=1} \colon \mathcal{Y}_t \to \mathcal{Y}$ given by

$$t^{1/2} \mapsto 1$$
 $\widetilde{Y}_{i,r} \mapsto Y_{i,r}.$

This map is called the specialization at t = 1. There exists a \mathbb{Z} -algebra anti-involution $\overline{(\cdot)}$ on \mathcal{Y}_t given by

$$t^{1/2} \mapsto t^{-1/2} \qquad \qquad \widetilde{Y}_{i,r} \mapsto t^{-1}\widetilde{Y}_{i,r}$$

This map is called the bar-involution.

 $\forall m \in \mathcal{Y} \text{ monomial} \rightsquigarrow \exists! \underline{m} \in \mathcal{Y}_t \text{ monomial} \text{ (with coefficient in } t^{\mathbb{Z}/2})$ such that $\underline{\overline{m}} = \underline{m}$. (e.g. $Y_{i,r} = t^{-1/2} \widetilde{Y}_{i,r}$.) Set $\widetilde{A}_{i,r} := A_{i,r}$.

Quantum Grothendieck rings (3)

For $i \in I$, set

$$K_{i,t} := \langle \widetilde{Y}_{i,r}(1 + t\widetilde{A}_{i,r+r_i}^{-1}), \widetilde{Y}_{j,r}^{\pm 1} \mid j \in I \setminus \{i\}, r \in \mathbb{Z} \rangle_{\mathbb{Z}[t^{\pm 1/2}]-\text{alg.}} \subset \mathcal{Y}_t.$$

Define the quantum Grothendieck ring of \mathcal{C}_{\bullet} as

$$K_t(\mathcal{C}_{\bullet}) := \bigcap_{i \in I} K_{i,t}.$$

Remark

Indeed, $K_{i,t}$ = the kernel of a *t*-analogue of "the screening operator associated to $i \in I$ " [Hernandez]. $\rightsquigarrow K_t(\mathcal{C}_{\bullet})$ is an affine analogue of the space of "W-invariant

functions".

Theorem (Varagnolo-Vasserot, Nakajima, Hernandez) $ev_{t=1}(K_t(\mathcal{C}_{\bullet})) = \chi_q(K(\mathcal{C}_{\bullet})).$

(q,t)-characters (1)

 $\exists a \mathbb{Z}[t^{\pm 1/2}]\text{-basis } \{M_t(m) \mid m \in \mathcal{B}\} \text{ of } K_t(\mathcal{C}_{\bullet}) \text{ such that} \\ ev_{t=1}(M_t(m)) = \chi_q(M(m)) \text{ [Nakajima, Hernandez]}. \\ \rightsquigarrow M_t(m) \text{ is called the } (q, t)\text{-character of } M(m). \end{cases}$

All $M_t(m)$ can be explicitly calculated once we know $M_t(Y_{i,0}), i \in I$.

Theorem (Nakajima (ADE cases), Hernandez (arbitrary)) $\exists ! \{L_t(\underline{m}) \mid m \in \mathcal{B}\} \text{ a } \mathbb{Z}[t^{\pm 1/2}] \text{-basis of } K_t(\mathcal{C}_{\bullet}) \text{ such that}$ (S1) $\overline{L_t(m)} = L_t(m), \text{ and}$ (S2) $M_t(m) = L_t(m) + \sum_{m' < m} P_{m,m'}(t)L_t(m') \text{ with}$ $P_{m,m'}(t) \in t^{-1}\mathbb{Z}[t^{-1}].$

The element $L_t(m)$ is called the (q, t)-character of L(m).

(q,t)-characters (2)

(S1)
$$\overline{L_t(m)} = L_t(m)$$
 (S2) $M_t(m) = L_t(m) + \sum_{m' < m} P_{m,m'}(t) L_t(m'), P_{m,m'}(t) \in t^{-1}\mathbb{Z}[t^{-1}]$

Remark

The characterization properties (S1) and (S2) provide an inductive algorithm for computing $P_{m,m'}(t)$'s, called Kazhdan-Lusztig algorithm.

When \mathfrak{g} is of ADE type,

$$\operatorname{ev}_{t=1}(L_t(m)) = \chi_q(L(m))$$
 [Nakajima].

Its proof is based on his geometric construction using quiver varieties, and it is valid only in $\rm ADE$ case. Moreover, in this case,

$$P_{m,m'}(t) \in t^{-1}\mathbb{Z}_{\geq 0}[t^{-1}]$$
 (positivity).

(q,t)-characters (2)

(S1)
$$\overline{L_t(m)} = L_t(m)$$
 (S2) $M_t(m) = L_t(m) + \sum_{m' < m} P_{m,m'}(t) L_t(m'), P_{m,m'}(t) \in t^{-1}\mathbb{Z}[t^{-1}]$

Remark

The characterization properties (S1) and (S2) provide an inductive algorithm for computing $P_{m,m'}(t)$'s, called Kazhdan-Lusztig algorithm.

Conjecture (Hernandez)

For arbitrary cases, we also have (1) $\forall m \in \mathcal{B}$, $ev_{t=1}(L_t(m)) = \chi_q(L(m))$. (2) $P_{m,m'}(t) \in t^{-1}\mathbb{Z}_{\geq 0}[t^{-1}]$.

If Conjecture (1) holds (in particular, in ADE cases), we have $[M(m)] = [L(m)] + \sum_{m' < m} P_{m,m'}(1)[L(m')] \text{ in } K(\mathcal{C}_{\bullet}).$

Quantized coordinate algebra of type A_N

Let \mathcal{U}_v^- be the negative half of the QEA of type A_N over $\mathbb{Q}(v^{1/2})$. $\left(:= \text{the } \mathbb{Q}(v^{1/2})\text{-algebra with generators } \{f_i\}_{i=1,\dots,N}, \frac{1}{r\text{ relations}} \begin{cases} f_i^2 f_j - (v+v^{-1})f_i f_j f_i + f_j f_i^2 = 0 & \text{if } |i-j| = 1 \\ f_i f_j - f_j f_i = 0 & \text{if } |i-j| > 1. \end{cases} \end{cases}$ $\rightsquigarrow \mathcal{A}_v[N_-^{A_N}] \underset{\mathbb{Z}[v^{\pm 1/2}]\text{-subalg}}{\subset} \mathcal{U}_v^-$ the quantized coordinate algebra.

Property

$$\begin{split} &\mathbb{Q}(v^{\pm 1/2})\otimes_{\mathbb{Z}[v^{\pm 1/2}]}\mathcal{A}_v[N^{A_N}]\simeq\mathcal{U}_v^-\quad \mathbb{C}\otimes_{\mathbb{Z}[v^{\pm 1/2}]}\mathcal{A}_v[N^{A_N}]\simeq\mathbb{C}[N^{A_N}].\\ &\text{Here } N^{A_N}_-:=\{(N+1)\times(N+1) \text{ unipotent lower triangular matrices}\}. \end{split}$$

• $\exists ev_{v=1} \colon \mathcal{A}_v[N_-^{A_N}] \to \mathbb{C}[N_-^{A_N}]$ a \mathbb{Z} -algebra homomorphism, called the specialization at v = 1.

∃ an Z-algebra anti-involution σ' on A_v[N^{A_N}], called the (twisted) dual bar involution (e.g. v^{1/2} → v^{-1/2}).

 $(:= \text{the restriction of the } \mathbb{Z}\text{-algebra anti-involution on } \mathcal{U}_v^- \text{given by } v^{1/2} \mapsto v^{-1/2}, f_i \mapsto -f_i.)$

Dual canonical bases

Let $\mathbf{i} = (i_1, i_2, \dots, i_\ell)$ be a reduced word of the longest element w_0 of the Weyl group $W^{A_N} \simeq \mathfrak{S}_{N+1}$. (e.g. if N = 2, then $\mathbf{i} = (1, 2, 1)$ or (2, 1, 2).)

Dual canonical bases

Let $\mathbf{i} = (i_1, i_2, \dots, i_\ell)$ be a reduced word of the longest element w_0 of the Weyl group $W^{A_N} \simeq \mathfrak{S}_{N+1}$. Let Δ_+ be the set of positive roots of type A_N . $\rightsquigarrow \exists \{ \widetilde{F^{up}}(\mathbf{c}, \mathbf{i}) \mid \mathbf{c} \in \mathbb{Z}_{\geq 0}^{\Delta_+} \}$ a $\mathbb{Z}[v^{\pm 1/2}]$ -basis of $\mathcal{A}_v[N_-^{A_N}]$ depending on \mathbf{i} , which is an analogue of the (dual) PBW-basis associated to \mathbf{i} [Lusztig].

Theorem (Lusztig, Saito, Kimura)

- $\exists ! \widetilde{\mathbf{B}}^{\mathrm{up}} := \{ \widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i}) \mid \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_+} \}$ a $\mathbb{Z}[v^{\pm 1/2}]$ -basis of $\mathcal{A}_v[N_-^{A_N}]$ such that (B1) $\sigma'(\widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i})) = \widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i})$, and (B2) $\widetilde{F^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i}) = \widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i}) + \sum_{\boldsymbol{c}'} p_{\boldsymbol{c}, \boldsymbol{c}'}(v) \widetilde{G^{\mathrm{up}}}(\boldsymbol{c}', \boldsymbol{i})$ with $p_{\boldsymbol{c}, \boldsymbol{c}'}(v) \in v\mathbb{Z}[v].$
- $\widetilde{\mathbf{B}}^{\mathrm{up}}$ does not depend on the choice of i.

The basis $\widetilde{\mathbf{B}}^{\mathrm{up}}$ is called the (normalized) dual canonical basis.

Hironori OYA (IMJ-PRG)

Quantum Grothendieck ring isomorphisms

Positivities

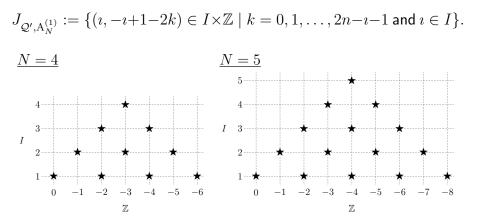
$$(\mathsf{B1}) \ \sigma'(\widetilde{G^{\mathrm{up}}}(\boldsymbol{c},\boldsymbol{i})) = \widetilde{G^{\mathrm{up}}}(\boldsymbol{c},\boldsymbol{i}) \ (\mathsf{B2}) \ \widetilde{F^{\mathrm{up}}}(\boldsymbol{c},\boldsymbol{i}) = \widetilde{G^{\mathrm{up}}}(\boldsymbol{c},\boldsymbol{i}) + \sum_{\boldsymbol{c}'} p_{\boldsymbol{c},\boldsymbol{c}'}(v) \widetilde{G^{\mathrm{up}}}(\boldsymbol{c}',\boldsymbol{i}), p_{\boldsymbol{c},\boldsymbol{c}'}(v) \in v\mathbb{Z}[v]$$

Theorem (Lusztig (*i* "adapted"), Kato, McNamara (arbitrary), (O. arbitrary))
$$p_{cc'}(v) \in \mathbb{Z}_{\geq 0}[v].$$

Theorem (Lusztig)

For
$$c_1, c_2 \in \mathbb{Z}_{\geq 0}^{\Delta_+}$$
, write
 $\widetilde{G^{up}}(c_1, i)\widetilde{G^{up}}(c_2, i) = \sum_{c} c_{c_1, c_2}^c \widetilde{G^{up}}(c, i).$
Then $c_{c_1, c_2}^c \in \mathbb{Z}_{\geq 0}[v^{\pm 1/2}].$

Assume that
$$\mathcal{U}_q(\mathcal{Lg})$$
 is of type $A_N^{(1)}$ $(I = \{1, \ldots, N\})$.
Define $J_{\mathcal{Q}', A_N^{(1)}}$ by



Assume that $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ is of type $A_N^{(1)}$ $(I = \{1, \ldots, N\})$. Define $J_{\mathcal{Q}', A_N^{(1)}}$ by

 $J_{\mathcal{Q}', \mathcal{A}_{N}^{(1)}} := \{ (i, -i+1-2k) \in I \times \mathbb{Z} \mid k = 0, 1, \dots, 2n-i-1 \text{ and } i \in I \}.$

Set

$$\begin{split} \mathcal{B}_{\mathcal{Q}',\mathcal{A}_{N}^{(1)}} &:= \left\{ \prod_{(\imath,r)} Y_{\imath,r}^{u_{\imath,r}} \in \mathcal{B} \mid u_{\imath,r} \neq 0 \text{ only if } (\imath,r) \in J_{\mathcal{Q}',\mathcal{A}_{N}^{(1)}} \right\}, \\ \mathcal{C}_{\mathcal{Q}',\mathcal{A}_{N}^{(1)}} &:= \text{the full subcategory of } \mathcal{C}_{\bullet} \text{ such that} \\ & \underline{\text{object}} : V \text{ with } [V] \in \sum_{m \in \mathcal{B}_{\mathcal{Q}',\mathcal{A}_{N}^{(1)}}} \mathbb{Z}[L(m)]. \end{split}$$

Lemma (Hernandez-Leclerc)

 $\mathcal{C}_{\mathcal{Q}', \mathcal{A}_{\mathcal{V}}^{(1)}}$ is an abelian \otimes -subcategory.

Hironori OYA (IMJ-PRG)

June 26, 2018 18 / 26

Set

$$K_t(\mathcal{C}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m).$$

Lemma

$$K_t(\mathcal{C}_{\mathcal{Q}', \mathcal{A}_N^{(1)}})$$
 is a $\mathbb{Z}[t^{\pm 1/2}]$ -subalgebra of $K_t(\mathcal{C}_{\bullet})$.

 $\rightsquigarrow K_t(\mathcal{C}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}) \text{ is called the quantum Grothendieck ring of } \mathcal{C}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}.$

Set

V

$$K_t(\mathcal{C}_{\mathcal{Q}', \mathcal{A}_N^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q}', \mathcal{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q}', \mathcal{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m).$$

Vrite

$$J_{\mathcal{Q}', \mathcal{A}_N^{(1)}} = \{(i_s, r_s) \mid s = 1, \dots, \ell (= N(N+1)/2)\} \text{ with } r_1 \ge \dots \ge r_{\ell}.$$

 $\rightsquigarrow \boldsymbol{i}_{\mathcal{Q}'} := (\imath_1, \imath_2, \dots, \imath_\ell)$ is a reduced word of $w_0 \in W^{\mathcal{A}_N}$.

Remark

The reduced word $i_{\mathcal{Q}'}$ depends on the choice of the total ordering on $J_{\mathcal{Q}', \mathcal{A}_N^{(1)}}$. However, its "commutation class" is uniquely determined. The following results does not depend on this choice. This $i_{\mathcal{Q}'}$ is "adapted to \mathcal{Q}''' .

Set

$$K_{t}(\mathcal{C}_{\mathcal{Q}', \mathcal{A}_{N}^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q}', \mathcal{A}_{N}^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_{t}(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q}', \mathcal{A}_{N}^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_{t}(m).$$

$$J_{\mathcal{Q}', \mathcal{A}_{N}^{(1)}} = \{(i_{s}, r_{s}) \mid s = 1, \dots, \ell(=N(N+1)/2)\} \text{ with } r_{1} \ge \dots \ge r_{\ell}.$$

$$\rightsquigarrow \mathbf{i}_{\mathcal{Q}'} := (i_{1}, i_{2}, \dots, i_{\ell}) \text{ is a reduced word of } w_{0} \in W^{\mathcal{A}_{N}}.$$
In the following example, $\mathbf{i}_{\mathcal{Q}'} = (1, 2, 1, 3, 2, 4, 1, 3, 2, 1) \text{ etc.}$

$$N = 4$$

$$K_t(\mathcal{C}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q}',\mathcal{A}_N^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m).$$
$$J_{\mathcal{Q}',\mathcal{A}_N^{(1)}} = \{(i_s, r_s) \mid s = 1, \dots, \ell(=N(N+1)/2)\} \text{ with } r_1 \ge \dots \ge r_\ell.$$

 $\rightsquigarrow \boldsymbol{i}_{\mathcal{Q}'} := (\imath_1, \imath_2, \dots, \imath_\ell)$ is a reduced word of $w_0 \in W^{\mathrm{A}_N}$.

Theorem (Hernandez-Leclerc)

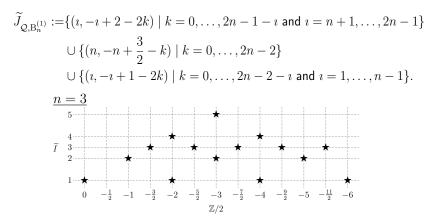
There exists a \mathbb{Z} -algebra isomorphism

$$\Phi_{\mathcal{A}} \colon \mathcal{A}_{v}[N_{-}^{\mathcal{A}_{N}}] \xrightarrow{\sim} K_{t}(\mathcal{C}_{\mathcal{Q}',\mathcal{A}_{N}^{(1)}})$$

given by

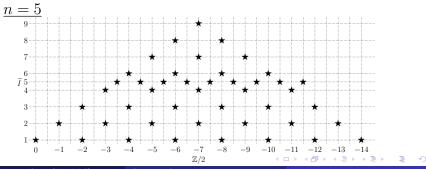
$$\begin{split} v^{\pm 1/2} &\mapsto t^{\mp 1/2} \qquad \widetilde{F^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i}_{\mathcal{Q}'}) \mapsto M_t(m(\boldsymbol{c})) \; \forall \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_+}, \\ \text{here } m(\boldsymbol{c}) &= \prod_{k=1}^{\ell} Y_{\imath_k, r_k}^{\boldsymbol{c}(s_{\imath_1} \cdots s_{\imath_{k-1}} \alpha_{\imath_k})}. \; \textit{Moreover}, \\ \Phi_{\mathrm{A}}(\widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i}_{\mathcal{Q}'})) = L_t(m(\boldsymbol{c})). \; \forall \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_+}. \end{split}$$

Assume that $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ is of type $B_n^{(1)}$ $(I = \{1, \ldots, n\})$. Let $\widetilde{I} := \{1, \ldots, 2n - 1\}$. Define $\widetilde{J}_{\mathcal{Q}, B_n^{(1)}}$ by



Assume that $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ is of type $B_n^{(1)}$ $(I = \{1, \ldots, n\})$. Let $\widetilde{I} := \{1, \ldots, 2n - 1\}$. Define $\widetilde{J}_{\mathcal{Q}, B_n^{(1)}}$ by

$$\begin{split} \widetilde{J}_{\mathcal{Q},\mathcal{B}_n^{(1)}} &:= \{(\imath,-\imath+2-2k) \mid k=0,\ldots,2n-1-\imath \text{ and } \imath = n+1,\ldots,2n-1\} \\ & \cup \{(n,-n+\frac{3}{2}-k) \mid k=0,\ldots,2n-2\} \\ & \cup \{(\imath,-\imath+1-2k) \mid k=0,\ldots,2n-2-\imath \text{ and } \imath = 1,\ldots,n-1\}. \end{split}$$



Hironori OYA (IMJ-PRG)

Quantum Grothendieck ring isomorphisms

June 26, 2018 20 / 26

Assume that $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ is of type $B_n^{(1)}$ $(I = \{1, \dots, n\})$. Let $\widetilde{I} := \{1, \dots, 2n-1\}$. Define $\widetilde{J}_{\mathcal{Q}, B_n^{(1)}}$. Consider the map $\widetilde{I} \to I, i \mapsto \overline{i} := \begin{cases} i & \text{if } i \leq n, \\ 2n-i & \text{if } i > n. \end{cases}$ "folding" Set

$$\begin{split} \mathcal{B}_{\mathcal{Q},\mathcal{B}_{n}^{(1)}} &:= \left\{ \prod_{(i,r)} Y_{i,r}^{u_{i,r}} \in \mathcal{B} \mid \begin{array}{c} u_{i,r} \neq 0 \text{ only if } (i,r) = (\bar{\imath},2s) \\ \text{for some } (\imath,s) \in \widetilde{J}_{\mathcal{Q},\mathcal{B}_{n}^{(1)}} \end{array} \right\}, \\ \mathcal{C}_{\mathcal{Q},\mathcal{B}_{n}^{(1)}} &:= \text{the full subcategory of } \mathcal{C}_{\bullet} \text{ such that} \end{split}$$

$$\underline{\text{object}}: \ V \text{ with } [V] \in \sum\nolimits_{m \in \mathcal{B}_{\mathcal{Q}, \mathbf{B}_n^{(1)}}} \mathbb{Z}[L(m)].$$

Lemma (Oh-Suh, Hernandez-O.)

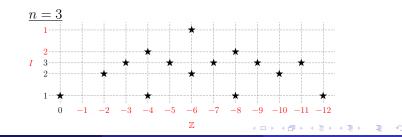
 $\mathcal{C}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$ is an abelian \otimes -subcategory.

Hironori OYA (IMJ-PRG)

June 26, 2018 20 / 26

Assume that $\mathcal{U}_q(\mathcal{L}\mathfrak{g})$ is of type $B_n^{(1)}$ $(I = \{1, \ldots, n\})$. Let $\widetilde{I} := \{1, \ldots, 2n - 1\}$. Consider the map $\widetilde{I} \to I, i \mapsto \overline{i} := \begin{cases} i & \text{if } i \leq n, \\ 2n - i & \text{if } i > n. \end{cases}$ "folding" Set

$$\mathcal{B}_{\mathcal{Q},\mathcal{B}_n^{(1)}} := \left\{ \prod_{(i,r)} Y_{i,r}^{u_{i,r}} \in \mathcal{B} \mid \begin{array}{c} u_{i,r} \neq 0 \text{ only if } (i,r) = (\overline{\imath}, 2s) \\ \text{for some } (\imath, s) \in \widetilde{J}_{\mathcal{Q},\mathcal{B}_n^{(1)}} \end{array} \right\}.$$



Hironori OYA (IMJ-PRG)

Quantum Grothendieck ring isomorphisms

June 26, 2018 20 / 26

Set

$$K_t(\mathcal{C}_{\mathcal{Q},\mathcal{B}_n^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathcal{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathcal{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m).$$

Lemma

$$K_t(\mathcal{C}_{\mathcal{Q}, \mathcal{B}_n^{(1)}})$$
 is a $\mathbb{Z}[t^{\pm 1/2}]$ -subalgebra of $K_t(\mathcal{C}_{\bullet})$.

 $\rightsquigarrow K_t(\mathcal{C}_{\mathcal{Q}, \mathcal{B}_n^{(1)}}) \text{ is called the quantum Grothendieck ring of } \mathcal{C}_{\mathcal{Q}, \mathcal{B}_n^{(1)}}.$

Set

$$K_t(\mathcal{C}_{\mathcal{Q},\mathcal{B}_n^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathcal{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathcal{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m).$$

Vrite

$$\widetilde{J}_{\mathcal{Q},\mathcal{B}_n^{(1)}} = \{(\imath_s, r_s) \mid s = 1, \dots, \ell(=2n(2n-1)/2)\} \text{ with } r_1 \ge \dots \ge r_\ell.$$

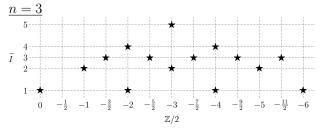
$$\rightsquigarrow \mathbf{i}_{\mathcal{O}}^{\mathrm{tw}} := (\imath_1, \imath_2, \dots, \imath_\ell) \text{ is a reduced word of } w_0 \in W^{\mathcal{A}_{2n-1}}.$$

Remark

The reduced word $i_{\mathcal{Q}}^{\text{tw}}$ depends on the choice of the total ordering on $J_{\mathcal{Q},B_n^{(1)}}$. However, its "commutation class" is uniquely determined. The following results does not depend on this choice. This $i_{\mathcal{Q}}^{\text{tw}}$ is always "non-adapted".

Set

$$\begin{split} K_t(\mathcal{C}_{\mathcal{Q},\mathcal{B}_n^{(1)}}) &:= \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathcal{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathcal{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m). \\ \widetilde{J}_{\mathcal{Q},\mathcal{B}_n^{(1)}} &= \{(\imath_s, r_s) \mid s = 1, \dots, \ell(=2n(2n-1)/2)\} \text{ with } r_1 \geq \dots \geq r_\ell. \\ &\rightsquigarrow \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}} := (\imath_1, \imath_2, \dots, \imath_\ell) \text{ is a reduced word of } w_0 \in W^{\mathcal{A}_{2n-1}}. \\ &\text{In the following example, } \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}} = (1, 2, 3, 1, 4, 3, 2, 5, 3, 1, 4, 3, 2, 3, 1) \\ &\text{etc.} \end{split}$$



3

$$K_t(\mathcal{C}_{\mathcal{Q},\mathcal{B}_n^{(1)}}) := \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathcal{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] M_t(m) = \sum_{m \in \mathcal{B}_{\mathcal{Q},\mathcal{B}_n^{(1)}}} \mathbb{Z}[t^{\pm 1/2}] L_t(m).$$
$$\widetilde{J}_{\mathcal{Q},\mathcal{B}_n^{(1)}} = \{(i_s, r_s) \mid s = 1, \dots, \ell(=2n(2n-1)/2)\} \text{ with } r_1 \ge \dots \ge r_\ell.$$

 $\rightsquigarrow \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}} := (\imath_1, \imath_2, \dots, \imath_\ell)$ is a reduced word of $w_0 \in W^{\mathcal{A}_{2n-1}}$.

Theorem (Hernandez-O.)

There exists a \mathbb{Z} -algebra isomorphism

$$\Phi_{\mathrm{B}} \colon \mathcal{A}_{v}[N_{-}^{\mathrm{A}_{2n-1}}] \xrightarrow{\sim} K_{t}(\mathcal{C}_{\mathcal{Q},\mathrm{B}_{n}^{(1)}})$$

given by

her

$$v^{\pm 1/2} \mapsto t^{\mp 1/2} \qquad \widetilde{F^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}}) \mapsto M_t(m'(\boldsymbol{c})) \ \forall \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_+},$$

$$\boldsymbol{e} \ m'(\boldsymbol{c}) = \prod_{k=1}^{\ell} Y_{i_k, r_k}^{\boldsymbol{c}(s_{i_1} \cdots s_{i_{k-1}} \alpha_{i_k})}. \ \textit{Moreover},$$

$$\Phi_{\mathrm{B}}(\widetilde{G^{\mathrm{up}}}(\boldsymbol{c}, \boldsymbol{i}_{\mathcal{Q}}^{\mathrm{tw}})) = L_t(m'(\boldsymbol{c})). \ \forall \boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\Delta_+}.$$

Positivities in $\mathcal{C}_{\mathcal{Q},\mathrm{B}_n^{(1)}}$

By our theorem, the positivities of the dual canonical bases $\widetilde{\mathbf{B}}^{\mathrm{up}}$ can be transported to those of (q,t)-characters.

Corollary (Positivity of Kazhdan-Lusztig type polynomials)

For
$$m \in \mathcal{B}_{\mathcal{Q}, \mathcal{B}_{n}^{(1)}}$$
, write

$$M_{t}(m) = \sum_{m' \in \mathcal{B}_{\mathcal{Q}, \mathcal{B}_{n}^{(1)}}} P_{m,m'}(t) L_{t}(m')$$
as before. Then $P_{m,m'}(t) \in \mathbb{Z}_{\geq 0}[t^{-1}]$.

This is the affirmative answer to Conjecture (2) for $C_{\mathcal{Q},B_n^{(1)}}$.

Corollary (Positivity of structure constants)

For
$$m_1, m_2 \in \mathcal{B}_{Q, B_n^{(1)}}$$
, write
 $L_t(m_1)L_t(m_2) = \sum_{\in \mathcal{B}_{Q, B_n^{(1)}}} c_{m_1, m_2}^m L_t(m).$
Then we have $c_{m_1, m_2}^m \in \mathbb{Z}_{\geq 0}[t^{\pm 1/2}].$

Comparison with Kashiwara-Oh

The following remarkable theorem is recently proved by means of the celebrated *generalized quantum affine Schur-Weyl dualities*, which is developed by Kang, Kashiwara, Kim and Oh :

Theorem (Kashiwara-Oh '17)

There exists a \mathbb{Z} -algebra isomorphism

$$[\mathscr{F}]: \operatorname{ev}_{v=1}(\mathcal{A}_v[N_-^{\mathbf{A}_{2n-1}}]) \xrightarrow{\sim} K(\mathcal{C}_{\mathcal{Q},\mathbf{B}_n^{(1)}})$$

which maps the dual canonical basis $ev_{v=1}(\mathbf{B}^{up})$ specialized at v = 1 to the set of classes of simple modules $\{[L(m)] \mid m \in \mathcal{B}_{OB^{(1)}}\}$.

Theorem (Hernandez-O.)

$$\Phi_{\mathrm{B}}|_{v=t=1} = [\mathscr{F}].$$

Hironori OYA (IMJ-PRG)

Comparison with Kashiwara-Oh

Theorem (Hernandez-O.)

$$\Phi_{\mathrm{B}}\mid_{v=t=1} = [\mathscr{F}].$$

Remark

Our construction of $\Phi_{\rm B}$ does not imply Kashiwara-Oh's theorem because, a priori,

- $\Phi_{\mathrm{B}}|_{v=t=1}$ maps $\mathrm{ev}_{v=1}(\widetilde{\mathbf{B}}^{\mathrm{up}})$ to $\{\mathrm{ev}_{v=1}(L_t(m))|m\in\mathcal{B}_{\mathcal{Q},\mathrm{B}_n^{(1)}}\}$, but
- $[\mathscr{F}]$ maps $\operatorname{ev}_{v=1}(\widetilde{\mathbf{B}}^{\operatorname{up}})$ to $\{[L(m)] \mid m \in \mathcal{B}_{\mathcal{Q}, \mathbf{B}_n^{(1)}}\}$,

(The coincidence of these images is nothing but Hernandez's conjecture (1)!) Hence our result and Kashiwara-Oh's result are independent.

Our comparison theorem above is proved by looking at the images of dual PBW-bases.

イロト イポト イヨト イヨト

Comparison with Kashiwara-Oh

Theorem (Kashiwara-Oh '17)

There exists a \mathbb{Z} -algebra isomorphism

$$[\mathscr{F}]: \operatorname{ev}_{v=1}(\mathcal{A}_v[N_-^{\mathbf{A}_{2n-1}}]) \xrightarrow{\sim} K(\mathcal{C}_{\mathcal{Q},\mathbf{B}_n^{(1)}})$$

which maps the dual canonical basis $ev_{v=1}(\widetilde{\mathbf{B}}^{up})$ specialized at v = 1 to the set of classes of simple modules $\{[L(m)] \mid m \in \mathcal{B}_{OB^{(1)}}\}.$

Theorem (Hernandez-O.)

$$\Phi_{\mathrm{B}}\mid_{v=t=1}=[\mathscr{F}].$$

Corollary

$$\chi_q(L(m)) = \operatorname{ev}_{t=1}(L_t(m)), \forall m \in \mathcal{B}_{\mathcal{Q}, \mathcal{B}_n^{(1)}}.$$

This is the affirmative answer to Conjecture (1) for $\mathcal{C}_{OB^{(1)}}$.

Hironori OYA (IMJ-PRG)

Comments on further results and proofs (1)

- There are several variants in the choices of the subcategories
 \$\mathcal{C}_{Q',A_N^{(1)}}\$ and \$\mathcal{C}_{Q,B_n^{(1)}}\$. However the parallel results hold. (The choice in this talk is the case that \$\mathcal{Q}'\$ and \$\mathcal{Q}\$ are "equioriented".)
- By combining our $\Phi_{\rm B}$ with $\Phi_{\rm A}$ for $A_{2n-1}^{(1)}$, we can obtain a $\mathbb{Z}[v^{\pm 1/2}]$ -algebra isomorphism $K_t(\mathcal{C}_{\mathcal{Q}',A_{2n-1}^{(1)}}) \simeq K_t(\mathcal{C}_{\mathcal{Q},B_n^{(1)}})$. For the choices of $\mathcal{C}_{\mathcal{Q}',A_{2n-1}^{(1)}}$ and $\mathcal{C}_{\mathcal{Q},B_n^{(1)}}$ in this talk, we know explicit correspondence of simple modules in terms of highest monomials.

Key point

 $\begin{array}{l} \mbox{Highest monomial parametrization of simple modules} = \\ \mbox{PBW-parametrization of the dual canonical basis} \end{array}$

Comments on further results and proofs (2)

Sketch of the proof of the existence of $\Phi_{\rm B}$

0) We have

- $K_t(\mathcal{C}_{\mathcal{Q}, \mathbf{B}_n^{(1)}}) \stackrel{\text{``truncate''}}{\hookrightarrow}$ the quantum torus of *finitely many* variables.
- A_v[N<sup>A_{2n-1}] → the quantum torus arising from the "quantum initial seed" associated with *i*^{tw}_Q (⇐ quantum cluster algebra).
 </sup>
- 1) Prove the isomorphism between ambient tori in Step 0. (Here we also use the cluster algebraic observation " $A_{i,r}$'s are \hat{Y} -variables")
- Show the coincidence between quantum *T*-system and quantum determinantal ientities (⇐ mutation sequence. Every algebra generator appears as a cluster variable in this sequence).

Reference : arXiv:1803.06754v1

T-system

For
$$i\in I$$
, $r\in\mathbb{Z}$, $k\in\mathbb{Z}_{\geq 0}$, set $m_{k,r}^{(i)}:=\prod_{s=1}^kY_{i,r+2r_i(s-1)}.$ $(m_{1,r}^{(i)}=Y_{i,r})$

The quantum T-system of type B [Hernandez-O.]

 $\exists \alpha, \beta \in \mathbb{Z}$ such that the following identity holds in $K_t(\mathcal{C}_{\mathcal{Q}, B_n^{(1)}})$:

$$L_t(m_{k,r}^{(i)})L_t(m_{k,r+2r_i}^{(i)}) = t^{\alpha/2}L_t(m_{k+1,r}^{(i)})L_t(m_{k-1,r+2r_i}^{(i)}) + t^{\beta/2}S_{k,r,t}^{(i)}.$$

$$\textbf{Here,} \hspace{0.2cm} S_{k,r,t}^{(i)} = \begin{cases} L_t(m_{k,r+2}^{(i-1)})L_t(m_{k,r+2}^{(i+1)}) \hspace{0.1cm} \textit{if} \hspace{0.1cm} i = n-2, \\ L_t(m_{k,r+2}^{(n-2)})L_t(m_{2k,r+1}^{(n)}) \hspace{0.1cm} \textit{if} \hspace{0.1cm} i = n-1, \\ L_t(m_{s,r+1}^{(n-1)})L_t(m_{s,r+3}^{(n-1)}) \hspace{0.1cm} \textit{if} \hspace{0.1cm} i = n \hspace{0.1cm} \textit{and} \hspace{0.1cm} k = 2s \hspace{0.1cm} \textit{is even}, \\ L_t(m_{s+1,r+1}^{(n-1)})L_t(m_{s,r+3}^{(n-1)}) \hspace{0.1cm} \textit{if} \hspace{0.1cm} i = n \hspace{0.1cm} \textit{and} \hspace{0.1cm} k = 2s+1 \hspace{0.1cm} \textit{is odd}. \end{cases} (L_t(m_{*,*}^{(0)}) := 1).$$

Example ($B_3^{(1)}$ -case)

•
$$L_t(m_{2,r}^{(1)})L_t(m_{2,r+4}^{(1)}) = tL_t(m_{3,r}^{(1)})L_t(m_{1,r+4}^{(1)}) + L_t(m_{2,r+2}^{(2)}).$$

•
$$L_t(m_{3,r}^{(3)})L_t(m_{3,r+2}^{(3)}) = t^{1/2}L_t(m_{4,r}^{(3)})L_t(m_{2,r+2}^{(3)}) + t^{-1/2}L_t(m_{2,r+1}^{(2)})L_t(m_{1,r+3}^{(2)}).$$