Quantum twist maps and dual canonical bases

Hironori Oya

The University of Tokyo
joint work with Yoshiyuki Kimura
Various Issues relating to Representation Theory and Non-commutative Harmonic Analysis RIMS, 29/6/2016

Subjects

Main objects:

- Quantized enveloping algebras $\mathbf{U}_{q}(\mathfrak{g})(=$ " q-analogue" of universal enveloping algebras $\mathbf{U}(\mathfrak{g})$) associated with Kac-Moody Lie algebras $\mathfrak{g} / \mathbb{C}$. $\xrightarrow{\text { In particular }}$

Quantized nilpotent subalgebras $\mathbf{U}_{q}^{-}(w)$, which have special bases called dual canonical bases.

- Quantum twist maps Θ_{w}, introduced by Lenagan-Yakimov, which are anti-algebra isomorphisms from $\mathbf{U}_{q}^{-}\left(w^{-1}\right) \rightarrow \mathbf{U}_{q}^{-}(w)$.
(Naive) Aim: Study the compatibility between Quantum twist maps and dual canonical bases.

Main results (abstract style)

The following are brief summaries of our main results.

Theorem (Kimura-O)

The quantum twist maps induce bijections between the elements of the dual canonical bases of quantum nilpotent subalgebras.

Theorem (Kimura-O)

The quantum twist maps map some "unipotent quantum minors" to some "unipotent quantum minors".

What are "twist maps"?

History: Study of total positivity in semisimple algebraic group.
$\overline{\text { A matrix }} g \in G:=S L_{n}(\mathbb{C})$ is called totally positive (resp. nonnegative) if all minors of g are positive (resp. nonnegative). Study of totally positive matrices has a long history (from the first half of 20th century) e.g. [Fekete 1912]
Total positivity criteria:
How many minors do we have to check in order to judge total positivity of $g \in G$?

$$
\begin{array}{lll}
\text { By definition } & \rightsquigarrow & { }_{2 n} C_{n}-2 \text { minors. } \\
\text { In fact } & \rightsquigarrow & n^{2}-1 \text { minors! }
\end{array}
$$

More generally, we briefly explain total nonnegativity criteria following Fomin-Zelevinsky (JAMS, 1999).

What are "twist maps"? (2)

Let

- $E_{i, j}:=$ the matrix unit with 1 in the (i, j)-entry, $E:=\sum_{i=1}^{n} E_{i, i}$,
- $B:=\{($ not strict $)$ upper triangular matrices $\}, B_{-}:=B^{T}$,
- $N:=\{$ strict upper triangular matrices $\}, N_{-}:=N^{T}$,
- $H:=\{$ diagonal matrices $\}=B \cap B^{-}$,
- $W:=N_{G}(H) / H \simeq \mathfrak{S}_{n}$ the Weyl group of $G=S L_{n}(\mathbb{C})$,
- For $i \in\{1, \ldots, n-1\}$, set

$$
\begin{aligned}
x_{i}(t) & :=E+t E_{i, i+1}, x_{\bar{i}}(t):=E+t E_{i+1, i}, \\
\bar{s}_{i} & :=\sum_{j \neq i, i+1} E_{j, j}-E_{i, i+1}+E_{i+1, i,}, \\
\bar{s}_{i} & :=\sum_{j \neq i, i+1} E_{j, j}+E_{i, i+1}-E_{i+1, i},
\end{aligned}
$$

- For $w \in W$ and a reduced expression $w=s_{i_{1}} \cdots s_{i_{\ell}}$, set

$$
\bar{w}:=\bar{s}_{i_{1}} \cdots \bar{s}_{i_{\ell}}, \overline{\bar{w}}:=\overline{\bar{s}}_{i_{1}} \cdots \overline{\bar{s}}_{i_{\ell}},
$$

- $G_{0}:=N_{-} H N, g=[g]_{-}[g]_{0}[g]_{+}\left(g \in G_{0}\right)$ the corresponding decomposition.

What are "twist maps"? (2)

Let $E_{i, j}, E, B, B_{-}, N, N_{-}, H, W,\left\{x_{i}(t), x_{\bar{i}}(t)\right\}_{i \in\{1, \ldots, n-1\}}$, $\{\bar{w}, \overline{\bar{w}}\}_{w \in W}, G_{0}, g=[g]_{-}[g]_{0}[g]_{+}\left(g \in G_{0}\right)$ standard notation. For $u, v \in W$, set $G^{u, v}:=B \bar{u} B \cap B_{-} \bar{v} B_{-}$the double Bruhat cell. Let $G_{\geq 0}$ the set of totally nonnegative elements, $G_{>0}^{u, v}:=G_{\geq 0} \cap G^{u, v}$. Let $H_{>0}$ the subset of H with nonnegative entries.
Let $u, v \in W$ and $u=s_{i_{1}} \cdots s_{i_{\ell}}, v=s_{i_{1}^{\prime}} \cdots s_{i_{\ell^{\prime}}^{\prime}}$ reduced expressions.
Set $\tilde{\boldsymbol{i}}=\left(\tilde{i}_{1}, \ldots, \tilde{i}_{\ell+\ell^{\prime}}\right):=$ any shuffle of $\left(i_{1}, \ldots, i_{\ell}\right)$ and $\left({\overline{i^{\prime}}}_{1}, \ldots,{\overline{i^{\prime}}}_{\ell^{\prime}}\right)$.

Fact (Fomin-Zelevinsky)

$H \times \mathbb{C}^{\ell+\ell^{\prime}} \rightarrow G^{u, v},\left(a ; t_{1}, \ldots, t_{\ell+\ell^{\prime}}\right) \mapsto a x_{\tilde{i}_{1}}\left(t_{1}\right) \cdots x_{\tilde{i}_{\ell+\ell^{\prime}}}\left(t_{\ell+\ell^{\prime}}\right)$ is a birational isomorphism (denoted by $x_{\tilde{\boldsymbol{i}}}$).

Fact (Lusztig, Fomin-Zelevinsky)

The map $x_{\tilde{i}}$ restricts to a bijection $H_{>0} \times \mathbb{R}_{>0}^{\ell+\ell^{\prime}} \rightarrow G_{>0}^{u, v}$.

What are "twist maps"? (3)

Factorization problem: Find the explicit formulae for the inverse birational isomorphism $x_{\tilde{\boldsymbol{i}}}^{-1}$.
To solve this problem, Fomin-Zelevinsky introduced twist maps $\zeta^{u, v}$!

Fact (Twist maps [Fomin-Zelevinsky])

We can define a biregular isomorphism $\zeta^{u, v}: G^{u, v} \rightarrow G^{u^{-1}, v^{-1}}$ as

$$
\zeta^{u, v}(x):=\left(\left[\overline{\overline{u^{-1}}} x\right]_{-}^{-1} \overline{\overline{u^{-1}}} x \overline{v^{-1}}\left[x \overline{v^{-1}}\right]_{+}^{-1}\right)^{\vee}
$$

where $(-)^{\vee}$ is an involution of the group G given by

$$
a^{\vee}=a^{-1}(a \in H), x_{i}(t)^{\vee}=x_{\bar{i}}(t), x_{\bar{i}}(t)^{\vee}=x_{i}(t) .
$$

$\operatorname{Moreover}\left(\zeta^{u, v}\right)^{-1}=\zeta^{u^{-1}, v^{-1}}$.

What are "twist maps"? (3)

Factorization problem: Find the explicit formulae for the inverse birational isomorphism $x_{\tilde{i}}^{-1}$.
To solve this problem, Fomin-Zelevinsky introduced twist maps $\zeta^{u, v}$!

Fact (Fomin-Zelevinsky)

Let $g \in G^{u, v} \cap \operatorname{Im} x_{\tilde{i}}$. Then t_{k} 's and the diagonal entries of a are described as the (explicit) Laurent monomials of certain minors of $\zeta^{u, v}(g)$.

By this solution, they deduce the total positivity criteria of the form: An element $g \in G^{u, v}$ is an element of $G_{>0}^{u, v}$ if and only if certain explicit $\ell+\ell^{\prime}+n-1$ minors of g are positive.

Remark

When $u=v=$ the longest element $w_{0}, g \in G_{>0}^{w_{0}, w_{0}}$ is equivalent to total positivity of g.

What are "twist maps"? (3)

Factorization problem: Find the explicit formulae for the inverse birational isomorphism $x_{\tilde{i}}^{-1}$.
To solve this problem, Fomin-Zelevinsky introduced twist maps $\zeta^{u, v}$!

Fact (Fomin-Zelevinsky)

Let $g \in G^{u, v} \cap \operatorname{Im} x_{\tilde{i}}$. Then t_{k} 's and the diagonal entries of a are described as the (explicit) Laurent monomials of certain minors of $\zeta^{u, v}(g)$.

By this solution, they deduce the total positivity criteria of the form: An element $g \in G^{u, v}$ is an element of $G_{>0}^{u, v}$ if and only if certain explicit $\ell+\ell^{\prime}+n-1$ minors of g are positive.

Important Property

The twist map $\zeta_{u, v}$ restricts to $G_{>0}^{u, v} \rightarrow G_{>0}^{u^{-1}, v^{-1}}$.

Our targets

Set $N(w):=N \cap \bar{w} N_{-} \bar{w}^{-1}$ and $N_{-}(w):=N_{-} \cap \bar{w} N \bar{w}^{-1}(w \in W)$. Twist maps in terms of y-coordinates
We have a biregular isomorphism

$$
\begin{array}{ccc}
G^{u, v} \cap G_{0} & \rightarrow & \left(N(u) \cap G_{0} \bar{u}^{-1}\right) \times H \times\left(N_{-}\left(v^{-1}\right) \cap \bar{v}^{-1} G_{0}\right) \\
\Psi & \longmapsto & \left(\bar{u}\left[\bar{u}^{-1} g\right]_{-} \bar{u}^{-1},[g]_{0}, \bar{v}^{-1}\left[g \bar{v}^{-1}\right]_{+} \bar{v}\right) .
\end{array}
$$

The elements of right-hand side are denoted by $\left(y_{+}, y_{0}, y_{-}\right)$
(y-coordinate). By the way, $\zeta^{u, v}$ maps $G^{u, v} \cap G_{0}$ to $G^{u^{-1}, v^{-1}} \cap G_{0}$.
Hence the restriction of twist maps are described using y-coordinates. Write $\left(y_{+}, y_{0}, y_{-}\right) \mapsto\left(y_{+}^{\prime}, y_{0}^{\prime}, y_{-}^{\prime}\right)$.

Fact (Fomin-Zelevinsky)

We have $y_{-}^{\prime}=\bar{v}\left(y_{-}^{\vee}\right)^{-1} \bar{v}^{-1}=: \tau_{v}\left(y_{-}\right)$.
In fact $\tau_{v}: N_{-}\left(v^{-1}\right) \rightarrow N_{-}(v)$ and $\tau_{v}^{*}: \mathbb{C}\left[N_{-}(v)\right] \rightarrow \mathbb{C}\left[N_{-}\left(v^{-1}\right)\right]$.

Our targets

Twist maps in terms of y-coordinates
We have a biregular isomorphism

$$
G^{u, v} \cap G_{0} \quad \rightarrow \quad\left(N(u) \cap G_{0} \bar{u}^{-1}\right) \times H \times\left(N_{-}\left(v^{-1}\right) \cap \bar{v}^{-1} G_{0}\right)
$$

The elements of right-hand side are denoted by $\left(y_{+}, y_{0}, y_{-}\right)$ (y-coordinate).

Fact (Fomin-Zelevinsky)

We have $y_{-}^{\prime}=\bar{v}\left(y_{-}^{\vee}\right)^{-1} \bar{v}^{-1}=: \tau_{v}\left(y_{-}\right)$.
In fact $\tau_{v}: N_{-}\left(v^{-1}\right) \rightarrow N_{-}(v)$ and $\tau_{v}^{*}: \mathbb{C}\left[N_{-}(v)\right] \rightarrow \mathbb{C}\left[N_{-}\left(v^{-1}\right)\right]$. When proving Important Property and solving Factorization problem, they use the property " τ_{u}^{*} maps some minors to some minors". We deal with the quantum analogue of $\tau_{u}\left(\right.$ or $\left.\tau_{u}^{*}\right)$ and prove the result corresponding to the red part generalizing minors to dual canonical bases.

Notation

Notation

Let

- $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$a symmetrizable Kac-Moody Lie algebra(ว finite dimensional simple Lie algebra) over \mathbb{C} with (fixed) triangular decomposition,
- $\left\{\alpha_{i}^{(\vee)}\right\}_{i \in I}$ the simple (co)roots of \mathfrak{g},
- P a \mathbb{Z}-lattice (weight lattice) of \mathfrak{h}^{*} and $P^{*}:=\operatorname{Hom}_{\mathbb{Z}}(P, \mathbb{Z}) \subset \mathfrak{h}$ such that $\left\{\alpha_{i}\right\}_{i \in I} \subset P$ and $\left\{\alpha_{i}^{\vee}\right\}_{i \in I} \subset P^{*}$,
- $P_{+}:=\left\{\lambda \in P \mid\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle \geq 0\right.$ for all $\left.i \in I\right\}$.
- W the Weyl group of $\mathfrak{g}\left(W \curvearrowright P, P^{*}\right)$,
- $I(w)$ the set of reduced words of $w \in W$,
- (,--) : $P \times P \rightarrow \mathbb{Q}$ a \mathbb{Q}-valued (W-invariant) symmetric \mathbb{Z}-bilinear form on P satisfying the following conditions:

$$
\left(\alpha_{i}, \alpha_{i}\right) \in 2 \mathbb{Z}_{>0},\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle=2\left(\lambda, \alpha_{i}\right) /\left(\alpha_{i}, \alpha_{i}\right) \text { for } i \in I, \lambda \in P \text {. }
$$

Quantized enveloping algebras

Definition

The quantized enveloping algebra $\mathbf{U}_{q}\left(:=\mathbf{U}_{q}(\mathfrak{g})\right)$ over $\mathbb{Q}(q)$ is the $\mathbb{Q}(q)$-algebra generated by

$$
e_{i}, f_{i}(i \in I), q^{h}\left(h \in P^{*}\right)
$$

with the following relations:
(i) $q^{0}=1, q^{h} q^{h^{\prime}}=q^{h+h^{\prime}}$,
(ii) $q^{h} e_{i}=q^{\left\langle h, \alpha_{i}\right\rangle} e_{i} q^{h}, q^{h} f_{i}=q^{-\left\langle h, \alpha_{i}\right\rangle} f_{i} q^{h}$,
(iii) $\left[e_{i}, f_{j}\right]=\delta_{i j} \frac{t_{i}-t_{i}^{-1}}{q_{i}-q_{i}^{-1}}$ where $q_{i}:=q^{\frac{\left(\alpha_{i}, \alpha_{i}\right)}{2}}$ and $t_{i}:=q^{\frac{\left(\alpha_{i}, \alpha_{i}\right)}{2} \alpha_{i}^{\vee}}$,
(iv) $\sum_{k=0}^{1-\left\langle\alpha_{i}^{\vee}, \alpha_{j}\right\rangle}(-1)^{k} x_{i}^{(k)} x_{j} x_{i}^{\left(1-\left\langle\alpha_{i}^{\vee}, \alpha_{j}\right\rangle-k\right)}=0$ for $i \neq j(x=e, f)$, where $x_{i}^{(n)}:=x_{i}^{n} /[n]_{i}!,[n]_{i}!:=\prod_{k=1}^{n}\left(q_{i}^{k}-q_{i}^{-k}\right) /\left(q_{i}-q_{i}^{-1}\right)$.

Quantized enveloping algebras

Definition

The quantized enveloping algebra $\mathbf{U}_{q}\left(:=\mathbf{U}_{q}(\mathfrak{g})\right)$ over $\mathbb{Q}(q)$ is the $\mathbb{Q}(q)$-algebra generated by

$$
e_{i}, f_{i}(i \in I), q^{h}\left(h \in P^{*}\right)
$$

Relations: $q^{h} e_{i}=q^{\left\langle\alpha_{i}, h\right\rangle} e_{i} q^{h}, q$-Serre relations, \ldots Let \mathbf{U}_{q}^{-}be the subalgebra of \mathbf{U}_{q} generated by f_{i} 's.

Hopf algebra structure of \mathbf{U}_{q}

$$
\begin{gathered}
\Delta\left(e_{i}\right)=e_{i} \otimes 1+t_{i} \otimes e_{i}, \Delta\left(f_{i}\right)=f_{i} \otimes t_{i}^{-1}+1 \otimes f_{i}, \Delta\left(q^{h}\right)=q^{h} \otimes q^{h} \\
\varepsilon\left(e_{i}\right)=\varepsilon\left(f_{i}\right)=0, \varepsilon\left(q^{h}\right)=1, \exists \text { antipode } S
\end{gathered}
$$

Quantized enveloping algebras

Definition

The quantized enveloping algebra $\mathbf{U}_{q}\left(:=\mathbf{U}_{q}(\mathfrak{g})\right)$ over $\mathbb{Q}(q)$ is the $\mathbb{Q}(q)$-algebra generated by

$$
e_{i}, f_{i}(i \in I), q^{h}\left(h \in P^{*}\right)
$$

Relations: $q^{h} e_{i}=q^{\left\langle\alpha_{i}, h\right\rangle} e_{i} q^{h}, q$-Serre relations, \ldots Let \mathbf{U}_{q}^{-}be the subalgebra of \mathbf{U}_{q} generated by f_{i} 's.

Hopf algebra structure of $\mathbf{U}_{q}(\Delta, \varepsilon, S)$
Let ${ }^{-}: \mathbf{U}_{q} \rightarrow \mathbf{U}_{q}$ be the \mathbb{Q}-algebra involution defined by

$$
\bar{q}=q^{-1}, \quad \overline{e_{i}}=e_{i}, \quad \overline{f_{i}}=f_{i}, \quad \overline{q^{h}}=q^{-h}
$$

Let $(-)^{T}: \mathbf{U}_{q} \rightarrow \mathbf{U}_{q}$ be the $\mathbb{Q}(q)$-algebra anti-involutions defined by

$$
\left(e_{i}\right)^{T}=f_{i}, \quad\left(f_{i}\right)^{T}=e_{i}, \quad\left(q^{h}\right)^{T}=q^{h}
$$

Canonical bases

Review the theory of canonical bases due to Lusztig and Kashiwara: Denote by $\left(\mathbf{U}_{q}^{-}\right)_{\mathbb{Z}}$ the $\mathbb{Z}\left[q^{ \pm 1}\right]$-subalgebra of \mathbf{U}_{q}^{-}generated by the elements $\left\{f_{i}^{(n)}\right\}_{i \in I, n \in \mathbb{Z}_{\geq 0}}$. Then there exists a free $\mathbb{Z}[q]$-submodule $\mathscr{L}(\infty)$ of \mathbf{U}_{q}^{-}such that

$$
\begin{array}{ccc}
\left(\mathbf{U}_{q}^{-}\right)_{\mathbb{Z}} \cap \mathscr{L}(\infty) \cap \overline{\mathscr{L}(\infty)} & \xrightarrow{\text { projection }} & \mathscr{L}(\infty) / q \mathscr{L}(\infty) \\
\mathbf{B}^{\text {low }} & \longmapsto & \mathscr{B}(\infty)
\end{array}
$$

is the isomorphism of \mathbb{Z}-modules. Moreover we can construct a "special" \mathbb{Z}-basis $\mathscr{B}(\infty)$ of $\mathscr{L}(\infty) / q \mathscr{L}(\infty)$. The inverse image of $\mathscr{B}(\infty)$ under this map is called the canonical bases $\mathrm{B}^{\text {low }}$ of U_{q}^{-}. In fact, $\mathbf{B}^{\text {low }}=\left\{G^{\text {low }}(b)\right\}_{b \in \mathscr{B}(\infty)}$ is a $\mathbb{Z}\left[q^{ \pm 1}\right]$-basis of $\left(\mathbf{U}_{q}^{-}\right)_{\mathbb{Z}}$.

Dual canonical bases

Definition

There exists a unique nondegenerate symmetric $\mathbb{Q}(q)$-bilinear form $(,)_{L}: \mathbf{U}_{q}^{-} \times \mathbf{U}_{q}^{-} \rightarrow \mathbb{Q}(q)$ such that

$$
(1,1)_{L}=1, \quad\left(f_{i} x, y\right)_{L}=\frac{1}{1-q_{i}^{2}}\left(x, e_{i}^{\prime}(y)\right)_{L}
$$

where $e_{i}^{\prime}: \mathbf{U}_{q}^{-} \rightarrow \mathbf{U}_{q}^{-}$is the $\mathbb{Q}(q)$-linear map given by

$$
e_{i}^{\prime}(x y)=e_{i}^{\prime}(x) y+q_{i}^{\left\langle\mathrm{wt} x, \alpha_{i}^{\vee}\right\rangle} x e_{i}^{\prime}(y), \quad e_{i}^{\prime}\left(f_{j}\right)=\delta_{i j}
$$

for homogeneous elements $x, y \in \mathbf{U}_{q}^{-}$.

Dual canonical bases

Definition

There exists a unique nondegenerate symmetric $\mathbb{Q}(q)$-bilinear form $(,)_{L}: \mathbf{U}_{q}^{-} \times \mathbf{U}_{q}^{-} \rightarrow \mathbb{Q}(q)$.
Denote by $\mathbf{B}^{\text {up }}$ the basis of \mathbf{U}_{q}^{-}dual to $\mathbf{B}^{\text {low }}$ with respect to the bilinear form $(,)_{L}$, that is, $\mathbf{B}^{\text {up }}=\left\{G^{\text {up }}(b)\right\}_{b \in \mathscr{B}(\infty)}$ such that

$$
\left(G^{\mathrm{low}}(b), G^{\mathrm{up}}\left(b^{\prime}\right)\right)_{L}=\delta_{b, b^{\prime}}
$$

for any $b, b^{\prime} \in \mathscr{B}(\infty)$.

Definition (The dual bar-involution)

For a homogeneous $x \in \mathbf{U}_{q}^{-}$, we define $\sigma(x)=\sigma_{L}(x) \in \mathbf{U}_{q}^{-}$by

$$
(\sigma(x), y)_{L}=\overline{(x, \bar{y}}_{L} \text { for an arbitrary } y \in \mathbf{U}_{q}^{-}
$$

Properties

We have $\overline{G^{\text {low }}(b)}=G^{\text {low }}(b)$ and $\sigma\left(G^{\mathrm{up}}(b)\right)=G^{\mathrm{up}}(b)$.
Let $\left(\mathbf{U}_{q}^{-}\right)^{\mathbb{Z}}:=\sum_{b \in \mathscr{B}(\infty)} \mathbb{Z}\left[q^{ \pm 1}\right] G^{\text {up }}(b)$. Then $\left(\mathbf{U}_{q}^{-}\right)^{\mathbb{Z}}$ is a subalgebra of \mathbf{U}_{q}^{-}.
Specialization:

$$
\begin{aligned}
& \mathbf{U}_{q}^{-}
\end{aligned}
$$

Quantum nilpotent subalgebras

Let $T_{i} \circlearrowright \mathbf{U}_{q}$ be a certain algebra automorphism, which is a q-analogue of $\bar{s}_{i} \circlearrowright \mathbf{U}(\mathfrak{g})\left(T_{i}=T_{i,-1}^{\prime}\right.$ in Lusztig's notation). For $w \in W$ and $\boldsymbol{i}=\left(i_{1}, \ldots, i_{\ell}\right) \in I(w)$, we have a well-defined automorphism $T_{w}:=T_{i_{1}} \cdots T_{i_{\ell}}$. Set
$F^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i}):=\prod_{k=1}^{\ell} q_{i_{k}}^{\frac{1}{2} c_{k}\left(c_{k}-1\right)}\left(1-q_{i_{k}}^{2}\right)^{c_{k}} T_{i_{1}} \cdots T_{i_{\ell-1}}\left(f_{i_{\ell}}^{c_{\ell}}\right) \cdots T_{i_{1}}\left(f_{i_{2}}^{c_{2}}\right) f_{i_{l}}^{c_{l}}$, where $\boldsymbol{c}=\left(c_{1}, \ldots, c_{\ell}\right) \in \mathbb{Z}_{\geq 0}^{\ell}$, called an (upper) PBW-basis element. (e.g. $\mathfrak{g}=\mathfrak{s l}_{3}, T_{1}\left(f_{2}\right)=f_{1} f_{2}-q f_{2} f_{1}$.)

The set $\left\{F^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i})\right\}_{\boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\ell}}$ is a linearly independent set of \mathbf{U}_{q}^{-}.

Fact (The quantum nilpotent subalgebras $\mathrm{U}_{q}^{-}(w)$)

Denote by $\mathbf{U}_{q}^{-}(w)$ the subspace of \mathbf{U}_{q}^{-}spanned by $\left\{F^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i})\right\}_{\boldsymbol{c}}$. In fact these subspaces are subalgebras and do not depend on the choice of $\boldsymbol{i} \in I(w)$.

Quantum nilpotent subalgebras (2)

Quantum nilpotent subalgebras are known to be compatible with dual canonical bases.

Proposition (Kimura)

Let $w \in W$ and $i \in I(w)$. Then
(1) $\mathbf{U}_{q}^{-}(w) \cap \mathbf{B}^{\text {up }}$ is a basis of $\mathbf{U}_{q}^{-}(w)$.
(2) For every element $G^{\mathrm{up}}(b)$ of $\mathbf{U}_{q}^{-}(w) \cap \mathbf{B}^{\mathrm{up}}$ there uniquely exists $c \in \mathbb{Z}_{>0}^{\ell}$ such that

$$
G^{\mathrm{up}}(\bar{b})=F^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i})+\sum_{\boldsymbol{c}^{\prime}<\boldsymbol{c}} d_{\boldsymbol{c}, \boldsymbol{c}^{\prime}}^{i} F^{\mathrm{up}}\left(\boldsymbol{c}^{\prime}, \boldsymbol{i}\right) \text { with } d_{\boldsymbol{c}, \boldsymbol{c}^{\prime}}^{i} \in q \mathbb{Z}[q] .
$$

Here $<$ denotes the left lexicographic order on $\mathbb{Z}_{\geq 0}^{\ell}$.
We denote by $b(\boldsymbol{c}, \boldsymbol{i})$ the corresponding crystal basis element.
In fact

$$
\left(\mathbf{U}_{q}^{-}(w)\right)^{\mathbb{Z}}:=\sum_{\boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\ell}} \mathbb{Z}\left[q^{ \pm 1}\right] G^{\text {up }}(b(\boldsymbol{c}, \boldsymbol{i})) \xrightarrow[{\mathbb{C} \otimes_{\mathbb{Z}\left[q^{ \pm 1]}\right]}}]{\text { "q }} \mathbb{C}\left[N_{-}^{\prime}(w)\right]
$$

Unipotent quantum minors

For $\lambda \in P_{+}$, denote by $V(\lambda)$ the integrable highest weight \mathbf{U}_{q}-module generated by a highest weight vector v_{λ} of weight λ. For $w \in W$ and $i \in I(w)$, set

$$
v_{w \lambda}=f_{i_{1}}^{\left(\left\langle s_{i_{2}} \cdots s_{i_{\ell}} \lambda, \alpha_{i_{1}}^{\vee}\right\rangle\right)} \cdots f_{i_{\ell-1}}^{\left(\left\langle s_{i_{\ell}} \lambda, \alpha_{i_{\ell-1}}^{\vee}\right\rangle\right)} f_{i_{\ell}}^{\left(\left\langle\lambda, \alpha_{i_{\ell}}^{\vee}\right\rangle\right)} \cdot v_{\lambda} .
$$

There exists a unique nondegenerate and symmetric bilinear form $(,)_{\lambda}: V(\lambda) \times V(\lambda) \rightarrow \mathbb{Q}(q)$ such that

$$
\left(v_{\lambda}, v_{\lambda}\right)_{\lambda}=1 \quad\left(x . v_{1}, v_{2}\right)_{\lambda}=\left(v_{1}, x^{T} . v_{2}\right)_{\lambda}
$$

for $v_{1}, v_{2} \in V(\lambda)$ and $x \in \mathbf{U}_{q}$.

Definition (Unipotent quantum minors)

For $\lambda \in P_{+}$and $u, w \in W$ with $u \lambda-w \lambda \in-\sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_{i}$, define the element $D_{u \lambda, w \lambda} \in \mathbf{U}_{q}^{-}$by the following property:

$$
\left(D_{u \lambda, w \lambda}, x\right)_{L}=\left(v_{u \lambda}, x \cdot v_{w \lambda}\right)_{\lambda} \text { for } x \in \mathbf{U}_{q}^{-}
$$

Unipotent quantum minors (2)

Proposition (Kashiwara)

The unipotent quantum minors are elements of \mathbf{B}^{up}.

In fact $F^{\text {up }}((0, \ldots, 1, \ldots, 0), \boldsymbol{i})$ is a unipotent quantum minor.

Proposition

Let $\lambda \in P_{+}$and $u_{1}, u_{2}, w \in W$. Suppose that u_{1} is less than or equal to w with respect to the weak right Bruhat order, that is, there exists $\boldsymbol{i}=\left(i_{1}, i_{2}, \ldots, i_{\ell}\right) \in I(w)$ such that $\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in I\left(u_{1}\right)$ for some $k \in\{1, \ldots, \ell\}$. Then

$$
D_{u_{1} \lambda, u_{2} \lambda} \in \mathbf{U}_{q}^{-}(w) .
$$

Quantum twist maps

Recall the $q=1$ case: $\tau_{w}\left(y_{-}\right):=\bar{w}\left(y_{-}^{\vee}\right)^{-1} \bar{w}^{-1}$.
Let $\vee: \mathbf{U}_{q} \rightarrow \mathbf{U}_{q}$ be the $\mathbb{Q}(q)$-algebra involution defined by

$$
e_{i}^{\vee}=f_{i}, \quad f_{i}^{\vee}=e_{i}, \quad\left(q^{h}\right)^{\vee}=q^{-h}
$$

Definition (Quantum twist maps [Lenagan-Yakimov])

For $w \in W$, we consider the $\mathbb{Q}(q)$-algebra anti-automorphism Θ_{w} of U_{q} defined by

$$
\Theta_{w}:=T_{w} \circ S \circ \vee .
$$

We have $\left(\Theta_{w}\right)^{-1}=\Theta_{w^{-1}}$. For a homogeneous element $x \in \mathbf{U}_{q}$, we have $\mathrm{wt}\left(\Theta_{w}(x)\right)=-w \mathrm{wt}(x)$.

Main results

Notation

(1) For $\boldsymbol{i}=\left(i_{1}, \cdots, i_{\ell}\right) \in I(w)$, we set $\boldsymbol{i}^{\text {rev }}=\left(i_{\ell}, \cdots, i_{1}\right) \in I\left(w^{-1}\right)$.
(2) For $\boldsymbol{c}=\left(c_{1}, \cdots, c_{\ell}\right) \in \mathbb{Z}_{\geq 0}^{\ell}$, we set $\boldsymbol{c}^{\mathrm{rev}}:=\left(c_{\ell}, \cdots, c_{1}\right) \in \mathbb{Z}_{\geq 0}^{\ell}$.

Theorem (Kimura-O)

Let $w \in W$ and $\boldsymbol{i} \in I(w)$. For $G^{\mathrm{up}}(b(\boldsymbol{c}, \boldsymbol{i})) \in \mathbf{B}^{\mathrm{up}} \cap \mathbf{U}_{q}^{-}(w)$, we have

$$
\Theta_{w^{-1}}\left(G^{\mathrm{up}}(b(\boldsymbol{c}, \boldsymbol{i}))\right)=G^{\mathrm{up}}\left(b\left(\boldsymbol{c}^{\mathrm{rev}}, \boldsymbol{i}^{\mathrm{rev}}\right)\right) \in \mathbf{B}^{\mathrm{up}} \cap \mathbf{U}_{q}^{-}\left(w^{-1}\right)
$$

Theorem (Kimura-O)

Let $\lambda \in P_{+}$and $u_{1}, u_{2} \in W$. Suppose that u_{1} and u_{2} are less than or equal to w with respect to the weak right Bruhat order. Then we have

$$
\Theta_{w^{-1}}\left(D_{u_{1} \lambda, u_{2} \lambda}\right)=D_{w^{-1} u_{2} \lambda, w^{-1} u_{1} \lambda}
$$

Examples

Example

For $w \in W$ and $\boldsymbol{i}=\left(i_{1}, \cdots, i_{\ell}\right) \in I(w)$, we have

$$
\Theta_{w^{-1}}\left(\left(1-q_{i_{k}}^{2}\right) T_{i_{1}} \cdots T_{i_{k-1}}\left(f_{i_{k}}\right)\right)=\left(1-q_{i_{k}}^{2}\right) T_{i_{\ell}} \cdots T_{i_{k+1}}\left(f_{i_{k}}\right)
$$

(We use this fact in order to prove our main theorem.)

Example

Let $\mathfrak{g}=\mathfrak{s l}_{3}$ and $w=s_{2} s_{1}$. Define $\rho \in P$ by $\left\langle\rho, \alpha_{i}^{\vee}\right\rangle=1(i=1,2)$. Then $D_{s_{2} s_{1} \rho, \rho}, D_{s_{2} s_{1} \rho, s_{1} \rho} \in \mathbf{U}_{q}^{-}\left(s_{2} s_{1}\right)$ by Proposition.
Now $D_{s_{2} s_{1} \rho, \rho}$ satisfies the assumption of our second main theorem while $D_{s_{2} s_{1} \rho, s_{1} \rho}$ does not.
In fact $\Theta_{s_{1} s_{2}}\left(D_{s_{2} s_{1} \rho, \rho}\right)=D_{s_{1} s_{2} \rho, \rho}$ but $\Theta_{s_{1} s_{2}}\left(D_{s_{2} s_{1} \rho, s_{1} \rho}\right) \neq D_{-\rho, \rho}$. Indeed $D_{-\rho, \rho} \notin \mathbf{U}_{q}^{-}\left(s_{1} s_{2}\right)$.

Sketch of the proof

Use the characterization of the dual canonical basis element $G^{\text {up }}(b(\boldsymbol{c}, \boldsymbol{i}))$, that is, dual-bar invariance and "unitriangular property". \rightsquigarrow We check the compatibility between Θ_{w} and PBW-bases, the dual-bar involution.
For proving our second theorem, we use our first theorem and the following lemma (Form preserving property):

Lemma

Let $w \in W$. Then we have

$$
(x, y)_{L}=\left(\Theta_{w^{-1}}(x), \Theta_{w^{-1}}(y)\right)_{L}
$$

for all $x, y \in \mathbf{U}_{q}^{-}(w)$.

Corollary

The following coincidence of coefficients is the immediate corollary of our results.

Corollary

Let $w \in W$ and $\boldsymbol{i} \in I(w)$. Write

$$
F^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i})=\sum_{\boldsymbol{c}^{\prime} \in \mathbb{Z}_{\geq 0}^{\ell}}\left[F^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i}): G^{\mathrm{up}}\left(b\left(\boldsymbol{c}^{\prime}, \boldsymbol{i}\right)\right)\right] G^{\mathrm{up}}\left(b\left(\boldsymbol{c}^{\prime}, \boldsymbol{i}\right)\right)
$$

Then we have
$\left[F^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i}): G^{\mathrm{up}}\left(b\left(\boldsymbol{c}^{\prime}, \boldsymbol{i}\right)\right)\right]=\left[F^{\mathrm{up}}\left(\boldsymbol{c}^{\mathrm{rev}}, \boldsymbol{i}^{\mathrm{rev}}\right): G^{\mathrm{up}}\left(b\left(\left(\boldsymbol{c}^{\prime}\right)^{\mathrm{rev}}, \boldsymbol{i}^{\mathrm{rev}}\right)\right)\right]$
In particular, we can write the expansion as follows: $F^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i})$

$$
=G^{\mathrm{up}}(b(\boldsymbol{c}, \boldsymbol{i}))+\sum_{\boldsymbol{c}^{\prime}<\boldsymbol{c},\left(\boldsymbol{c}^{\prime}\right)^{\mathrm{rev}}<\boldsymbol{c}^{\mathrm{rev}}}\left[F^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i}): G^{\mathrm{up}}\left(b\left(\boldsymbol{c}^{\prime}, \boldsymbol{i}\right)\right)\right] G^{\mathrm{up}}\left(b\left(\boldsymbol{c}^{\prime}, \boldsymbol{i}\right)\right) .
$$

