Quantum twist maps and dual canonical bases

Hironori Oya

The University of Tokyo

joint work with Yoshiyuki Kimura

Various Issues relating to Representation Theory and Non-commutative Harmonic Analysis RIMS, 29/6/2016

Subjects

Main objects:

 Quantized enveloping algebras U_q(g)(="q-analogue" of universal enveloping algebras U(g)) associated with Kac-Moody Lie algebras g/C.

Quantized nilpotent subalgebras $\mathbf{U}_q^-(w)$, which have special bases called dual canonical bases.

• Quantum twist maps Θ_w , introduced by Lenagan-Yakimov, which are anti-algebra isomorphisms from $\mathbf{U}_q^-(w^{-1}) \to \mathbf{U}_q^-(w)$. (Naive) Aim: Study the compatibility between Quantum twist maps and dual canonical bases.

Main results (abstract style)

The following are brief summaries of our main results.

Theorem (Kimura-O)

The quantum twist maps induce bijections between the elements of the dual canonical bases of quantum nilpotent subalgebras.

Theorem (Kimura-O)

The quantum twist maps map some "unipotent quantum minors" to some "unipotent quantum minors".

History: Study of total positivity in semisimple algebraic group. A matrix $g \in G := SL_n(\mathbb{C})$ is called totally positive (resp. nonnegative) if all minors of g are positive (resp. nonnegative). Study of totally positive matrices has a long history (from the first half of 20th century) e.g. [Fekete 1912] Total positivity criteria:

How many minors do we have to check in order to judge total positivity of $g \in G$?

By definition	\rightsquigarrow	$_{2n}C_n-2$ minors.
In fact	\rightsquigarrow	$n^2 - 1$ minors!

More generally, we briefly explain total nonnegativity criteria following Fomin-Zelevinsky (JAMS, 1999).

What are "twist maps"? (2)

Let

- $E_{i,j} :=$ the matrix unit with 1 in the (i, j)-entry, $E := \sum_{i=1}^{n} E_{i,i}$,
- $B := \{ (not strict) upper triangular matrices \}, B_{-} := B^{T},$
- $N := \{ \text{strict upper triangular matrices} \}, N_{-} := N^{T},$
- $H := \{ diagonal matrices \} = B \cap B^-$,
- $W := N_G(H)/H \simeq \mathfrak{S}_n$ the Weyl group of $G = SL_n(\mathbb{C})$,

• For
$$i \in \{1, ..., n-1\}$$
, set

$$\begin{aligned} x_i(t) &:= E + t E_{i,i+1}, \ x_{\bar{i}}(t) := E + t E_{i+1,i}, \\ \bar{s}_i &:= \sum_{j \neq i, i+1} E_{j,j} - E_{i,i+1} + E_{i+1,i}, \\ \bar{\bar{s}}_i &:= \sum_{j \neq i, i+1} E_{j,j} + E_{i,i+1} - E_{i+1,i}, \end{aligned}$$

• For $w \in W$ and a reduced expression $w = s_{i_1} \cdots s_{i_\ell}$, set

$$\bar{w} := \bar{s}_{i_1} \cdots \bar{s}_{i_\ell}, \ \bar{\bar{w}} := \bar{\bar{s}}_{i_1} \cdots \bar{\bar{s}}_{i_\ell},$$

• $G_0 := N_-HN$, $g = [g]_-[g]_0[g]_+$ ($g \in G_0$) the corresponding decomposition.

What are "twist maps"? (2)

Let $E_{i,j}$, E, B, B_- , N, N_- , H, W, $\{x_i(t), x_{\overline{i}}(t)\}_{i \in \{1, \dots, n-1\}}$, $\{\overline{w}, \overline{w}\}_{w \in W}$, G_0 , $g = [g]_-[g]_0[g]_+$ ($g \in G_0$) standard notation. For $u, v \in W$, set $G^{u,v} := B\overline{u}B \cap B_-\overline{v}B_-$ the double Bruhat cell. Let $G_{\geq 0}$ the set of totally nonnegative elements, $G_{>0}^{u,v} := G_{\geq 0} \cap G^{u,v}$. Let $H_{>0}$ the subset of H with nonnegative entries. Let $u, v \in W$ and $u = s_{i_1} \cdots s_{i_\ell}$, $v = s_{i'_1} \cdots s_{i'_{\ell'}}$ reduced expressions. Set $\widetilde{i} = (\widetilde{i}_1, \dots, \widetilde{i}_{\ell+\ell'}) :=$ any shuffle of (i_1, \dots, i_ℓ) and $(\overline{i'}_1, \dots, \overline{i'_{\ell'}})$.

Fact (Fomin-Zelevinsky)

 $H \times \mathbb{C}^{\ell+\ell'} \to G^{u,v}$, $(a; t_1, \ldots, t_{\ell+\ell'}) \mapsto ax_{\tilde{i}_1}(t_1) \cdots x_{\tilde{i}_{\ell+\ell'}}(t_{\ell+\ell'})$ is a birational isomorphism (denoted by $x_{\tilde{i}}$).

Fact (Lusztig, Fomin-Zelevinsky)

The map $x_{\tilde{i}}$ restricts to a bijection $H_{>0} \times \mathbb{R}_{>0}^{\ell+\ell'} \to G_{>0}^{u,v}$.

Hironori Oya (The University of Tokyo)

What are "twist maps"? (3)

Factorization problem: Find the explicit formulae for the inverse birational isomorphism $x_{\tilde{i}}^{-1}$. To solve this problem, Fomin-Zelevinsky introduced twist maps $\zeta^{u,v}$!

Fact (Twist maps [Fomin-Zelevinsky])

We can define a biregular isomorphism $\zeta^{u,v} \colon G^{u,v} \to G^{u^{-1},v^{-1}}$ as

$$\zeta^{u,v}(x) := \left([\overline{\overline{u^{-1}}}x]_{-}^{-1} \overline{\overline{u^{-1}}} x \overline{v^{-1}} [x \overline{v^{-1}}]_{+}^{-1} \right)^{\vee},$$

where $(-)^{\vee}$ is an involution of the group G given by

$$a^{\vee} = a^{-1} \ (a \in H), \ x_i(t)^{\vee} = x_{\overline{i}}(t), \ x_{\overline{i}}(t)^{\vee} = x_i(t).$$

Moreover $(\zeta^{u,v})^{-1} = \zeta^{u^{-1},v^{-1}}$.

What are "twist maps"? (3)

<u>Factorization problem</u>: Find the explicit formulae for the inverse birational isomorphism $x_{\tilde{i}}^{-1}$.

To solve this problem, Fomin-Zelevinsky introduced twist maps $\zeta^{u,v}$!

Fact (Fomin-Zelevinsky)

Let $g \in G^{u,v} \cap \operatorname{Im} x_{\tilde{i}}$. Then t_k 's and the diagonal entries of a are described as the (explicit) Laurent monomials of certain minors of $\zeta^{u,v}(g)$.

By this solution, they deduce the total positivity criteria of the form: An element $g \in G^{u,v}$ is an element of $G_{>0}^{u,v}$ if and only if certain explicit $\ell + \ell' + n - 1$ minors of g are positive.

Remark

When u = v = the longest element w_0 , $g \in G_{>0}^{w_0,w_0}$ is equivalent to total positivity of g.

Hironori Oya (The University of Tokyo)

What are "twist maps"? (3)

Factorization problem: Find the explicit formulae for the inverse birational isomorphism $x_{\tilde{i}}^{-1}$. To solve this problem, Fomin-Zelevinsky introduced twist maps $\zeta^{u,v}$!

Fact (Fomin-Zelevinsky)

Let $g \in G^{u,v} \cap \operatorname{Im} x_{\tilde{i}}$. Then t_k 's and the diagonal entries of a are described as the (explicit) Laurent monomials of certain minors of $\zeta^{u,v}(g)$.

By this solution, they deduce the total positivity criteria of the form: An element $g \in G^{u,v}$ is an element of $G_{>0}^{u,v}$ if and only if certain explicit $\ell + \ell' + n - 1$ minors of g are positive.

Important Property

The twist map $\zeta_{u,v}$ restricts to $G_{>0}^{u,v} \to G_{>0}^{u^{-1},v^{-1}}$.

Our targets

Set $N(w) := N \cap \overline{w}N_{-}\overline{w}^{-1}$ and $N_{-}(w) := N_{-} \cap \overline{w}N\overline{w}^{-1}$ ($w \in W$). Twist maps in terms of *y*-coordinates We have a biregular isomorphism

$$\begin{array}{cccc} G^{u,v} \cap G_0 & \to & (N(u) \cap G_0 \bar{u}^{-1}) \times H \times (N_-(v^{-1}) \cap \bar{v}^{-1} G_0) \\ & & & & \\ g & \longmapsto & (\bar{u} [\bar{u}^{-1}g]_- \bar{u}^{-1}, [g]_0, \bar{v}^{-1} [g\bar{v}^{-1}]_+ \bar{v}). \end{array}$$

The elements of right-hand side are denoted by (y_+, y_0, y_-) (y-coordinate). By the way, $\zeta^{u,v}$ maps $G^{u,v} \cap G_0$ to $G^{u^{-1},v^{-1}} \cap G_0$. Hence the restriction of twist maps are described using y-coordinates. Write $(y_+, y_0, y_-) \mapsto (y'_+, y'_0, y'_-)$.

Fact (Fomin-Zelevinsky)

We have
$$y'_{-} = \bar{v}(y_{-}^{\vee})^{-1}\bar{v}^{-1} =: \tau_{v}(y_{-}).$$

In fact $\tau_v \colon N_-(v^{-1}) \to N_-(v)$ and $\tau_v^* \colon \mathbb{C}[N_-(v)] \to \mathbb{C}[N_-(v^{-1})].$

7 / 21

Our targets

 $\frac{\text{Twist maps in terms of } y\text{-coordinates}}{\text{We have a biregular isomorphism}}$

 $G^{u,v} \cap G_0 \to (N(u) \cap G_0 \bar{u}^{-1}) \times H \times (N_-(v^{-1}) \cap \bar{v}^{-1} G_0)$

The elements of right-hand side are denoted by (y_+, y_0, y_-) (y-coordinate).

Fact (Fomin-Zelevinsky)

We have
$$y'_{-} = \bar{v}(y_{-}^{\vee})^{-1}\bar{v}^{-1} =: \tau_{v}(y_{-}).$$

In fact $\tau_v \colon N_-(v^{-1}) \to N_-(v)$ and $\tau_v^* \colon \mathbb{C}[N_-(v)] \to \mathbb{C}[N_-(v^{-1})]$. When proving Important Property and solving Factorization problem, they use the property " τ_u^* maps some minors to some minors". We deal with the quantum analogue of τ_u (or τ_u^*) and prove the result corresponding to the red part generalizing minors to dual canonical bases.

Hironori Oya (The University of Tokyo)

7 / 21

Notation

Notation

Let

- g = n⁺ ⊕ h ⊕ n⁻ a symmetrizable Kac-Moody Lie algebra(⊃ finite dimensional simple Lie algebra) over C with (fixed) triangular decomposition,
- $\{\alpha_i^{(\vee)}\}_{i\in I}$ the simple (co)roots of \mathfrak{g} ,
- $P \ \text{a } \mathbb{Z}$ -lattice (weight lattice) of \mathfrak{h}^* and $P^* := \operatorname{Hom}_{\mathbb{Z}}(P, \mathbb{Z}) \subset \mathfrak{h}$ such that $\{\alpha_i\}_{i \in I} \subset P$ and $\{\alpha_i^{\vee}\}_{i \in I} \subset P^*$,
- $P_+ := \{ \lambda \in P \mid \langle \lambda, \alpha_i^{\vee} \rangle \ge 0 \text{ for all } i \in I \}.$
- W the Weyl group of \mathfrak{g} ($W \curvearrowright P, P^*$),
- I(w) the set of reduced words of $w \in W$,

• $(-,-): P \times P \to \mathbb{Q}$ a \mathbb{Q} -valued (*W*-invariant) symmetric \mathbb{Z} -bilinear form on *P* satisfying the following conditions: $(\alpha_i, \alpha_i) \in 2\mathbb{Z}_{>0}, \ \langle \lambda, \alpha_i^{\vee} \rangle = 2(\lambda, \alpha_i) / (\alpha_i, \alpha_i) \text{ for } i \in I, \ \lambda \in P.$

Quantized enveloping algebras

Definition

The quantized enveloping algebra $U_q(:=U_q(\mathfrak{g}))$ over $\mathbb{Q}(q)$ is the $\mathbb{Q}(q)$ -algebra generated by

$$e_i, f_i \ (i \in I), \ q^h \ (h \in P^*),$$

with the following relations:

(i)
$$q^{0} = 1$$
, $q^{h}q^{h'} = q^{h+h'}$,
(ii) $q^{h}e_{i} = q^{\langle h, \alpha_{i} \rangle}e_{i}q^{h}$, $q^{h}f_{i} = q^{-\langle h, \alpha_{i} \rangle}f_{i}q^{h}$,
(iii) $[e_{i}, f_{j}] = \delta_{ij}\frac{t_{i} - t_{i}^{-1}}{q_{i} - q_{i}^{-1}}$ where $q_{i} := q^{\frac{\langle \alpha_{i}, \alpha_{i} \rangle}{2}}$ and $t_{i} := q^{\frac{\langle \alpha_{i}, \alpha_{i} \rangle}{2}\alpha_{i}^{\vee}}$,
(iv) $\sum_{\substack{k=0\\k=0}}^{1-\langle \alpha_{i}^{\vee}, \alpha_{j} \rangle} (-1)^{k}x_{i}^{\langle k\rangle}x_{j}x_{i}^{(1-\langle \alpha_{i}^{\vee}, \alpha_{j} \rangle - k)} = 0$ for $i \neq j$ ($x = e, f$),
where $x_{i}^{(n)} := x_{i}^{n}/[n]_{i}!$, $[n]_{i}! := \prod_{k=1}^{n}(q_{i}^{k} - q_{i}^{-k})/(q_{i} - q_{i}^{-1})$.

Hironori Oya (The University of Tokyo)

Quantized enveloping algebras

Definition

The quantized enveloping algebra $U_q(:=U_q(\mathfrak{g}))$ over $\mathbb{Q}(q)$ is the $\mathbb{Q}(q)$ -algebra generated by

$$e_i, f_i \ (i \in I), \ q^h \ (h \in P^*),$$

Relations: $q^h e_i = q^{\langle \alpha_i, h \rangle} e_i q^h$, *q*-Serre relations, . . . Let \mathbf{U}_q^- be the subalgebra of \mathbf{U}_q generated by f_i 's.

Hopf algebra structure of \mathbf{U}_q

$$\Delta(e_i) = e_i \otimes 1 + t_i \otimes e_i, \ \Delta(f_i) = f_i \otimes t_i^{-1} + 1 \otimes f_i, \ \Delta(q^h) = q^h \otimes q^h,$$
$$\varepsilon(e_i) = \varepsilon(f_i) = 0, \varepsilon(q^h) = 1, \exists \text{antipode } S.$$

Quantized enveloping algebras

Definition

The quantized enveloping algebra $\mathbf{U}_q(:=\mathbf{U}_q(\mathfrak{g}))$ over $\mathbb{Q}(q)$ is the $\mathbb{Q}(q)$ -algebra generated by

$$e_i, f_i \ (i \in I), \ q^h \ (h \in P^*),$$

Relations: $q^h e_i = q^{\langle \alpha_i, h \rangle} e_i q^h$, *q*-Serre relations, . . . Let \mathbf{U}_q^- be the subalgebra of \mathbf{U}_q generated by f_i 's.

Hopf algebra structure of \mathbf{U}_q (Δ , ε , S) Let $^-$: $\mathbf{U}_q \to \mathbf{U}_q$ be the \mathbb{Q} -algebra involution defined by

$$\begin{split} \overline{q} &= q^{-1}, \qquad \overline{e_i} = e_i, \qquad \overline{f_i} = f_i, \qquad \overline{q^h} = q^{-h}. \\ \text{Let } (-)^T \colon \mathbf{U}_q \to \mathbf{U}_q \text{ be the } \mathbb{Q} (q) \text{-algebra anti-involutions defined by} \\ (e_i)^T &= f_i, \qquad (f_i)^T = e_i, \qquad (q^h)^T = q^h. \end{split}$$

9 / 21

Canonical bases

Review the theory of canonical bases due to Lusztig and Kashiwara: Denote by $(\mathbf{U}_q^-)_{\mathbb{Z}}$ the $\mathbb{Z}[q^{\pm 1}]$ -subalgebra of \mathbf{U}_q^- generated by the elements $\{f_i^{(n)}\}_{i\in I,n\in\mathbb{Z}_{\geq 0}}$. Then there exists a free $\mathbb{Z}[q]$ -submodule $\mathscr{L}(\infty)$ of \mathbf{U}_q^- such that

$$\begin{array}{ccc} \left(\mathbf{U}_{q}^{-}\right)_{\mathbb{Z}} \cap \mathscr{L}(\infty) \cap \overline{\mathscr{L}(\infty)} & \xrightarrow{\mathrm{projection}} & \mathscr{L}(\infty)/q\mathscr{L}(\infty) \\ & \cup & \cup \\ & \mathbf{B}^{\mathrm{low}} & \longmapsto & \mathscr{B}(\infty) \end{array}$$

is the isomorphism of \mathbb{Z} -modules. Moreover we can construct a "special" \mathbb{Z} -basis $\mathscr{B}(\infty)$ of $\mathscr{L}(\infty)/q\mathscr{L}(\infty)$. The inverse image of $\mathscr{B}(\infty)$ under this map is called the canonical bases \mathbf{B}^{low} of \mathbf{U}_q^- . In fact, $\mathbf{B}^{\text{low}} = \{G^{\text{low}}(b)\}_{b \in \mathscr{B}(\infty)}$ is a $\mathbb{Z}[q^{\pm 1}]$ -basis of $(\mathbf{U}_q^-)_{\mathbb{Z}}$.

Dual canonical bases

Definition

There exists a unique nondegenerate symmetric $\mathbb{Q}(q)$ -bilinear form $(,)_L \colon \mathbf{U}_q^- \times \mathbf{U}_q^- \to \mathbb{Q}(q)$ such that

$$(1,1)_L = 1,$$
 $(f_i x, y)_L = \frac{1}{1 - q_i^2} (x, e_i'(y))_L.$

where $e_i'\colon \mathbf{U}_q^-\to \mathbf{U}_q^-$ is the $\mathbb{Q}(q)\text{-linear}$ map given by

$$e_{i}'\left(xy\right) = e_{i}'\left(x\right)y + q_{i}^{\langle \operatorname{wt} x, \alpha_{i}^{\vee} \rangle} x e_{i}'\left(y\right), \quad e_{i}'(f_{j}) = \delta_{ij},$$

for homogeneous elements $x, y \in \mathbf{U}_q^-$.

イロト イポト イヨト イヨト 二日

Dual canonical bases

Definition

There exists a unique nondegenerate symmetric $\mathbb{Q}(q)$ -bilinear form $(,)_L \colon \mathbf{U}_q^- \times \mathbf{U}_q^- \to \mathbb{Q}(q)$. Denote by \mathbf{B}^{up} the basis of \mathbf{U}_q^- dual to $\mathbf{B}^{\mathrm{low}}$ with respect to the bilinear form $(,)_L$, that is, $\mathbf{B}^{\mathrm{up}} = \{G^{\mathrm{up}}(b)\}_{b \in \mathscr{B}(\infty)}$ such that

$$(G^{\text{low}}(b), G^{\text{up}}(b'))_L = \delta_{b,b'}$$

for any $b, b' \in \mathscr{B}(\infty)$.

Definition (The dual bar-involution)

For a homogeneous $x \in \mathbf{U}_{q}^{-}$, we define $\sigma\left(x\right) = \sigma_{L}\left(x\right) \in \mathbf{U}_{q}^{-}$ by

$$(\sigma (x), y)_{L} = \overline{(x, \overline{y})}_{L}$$
 for an arbitrary $y \in \mathbf{U}_{q}^{-}$.

11 /

Properties

We have
$$G^{\text{low}}(b) = G^{\text{low}}(b)$$
 and $\sigma(G^{\text{up}}(b)) = G^{\text{up}}(b)$.
Let $(\mathbf{U}_q^-)^{\mathbb{Z}} := \sum_{b \in \mathscr{B}(\infty)} \mathbb{Z}[q^{\pm 1}] G^{\text{up}}(b)$. Then $(\mathbf{U}_q^-)^{\mathbb{Z}}$ is a subalgebra of \mathbf{U}_q^- .
Specialization:

$$\mathbf{U}_{q}^{-} \xrightarrow{\left(\mathbf{U}_{q}^{-}\right)_{\mathbb{Z}}} \xrightarrow{\left(\stackrel{aq \to 1^{n}}{\mathbb{C} \otimes_{\mathbb{Z}[q^{\pm 1}]}^{-}}\right)} \mathbf{U}(\mathfrak{n}^{-})$$

$$\stackrel{}{\rightarrow} \underbrace{\left(\mathbf{U}_{q}^{-}\right)^{\mathbb{Z}}}_{\left(\stackrel{aq \to 1^{n}}{\mathbb{C} \otimes_{\mathbb{Z}[q^{\pm 1}]}^{-}}\right)} \mathbb{C}[N].$$

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Quantum nilpotent subalgebras

Let $T_i \circlearrowright \mathbf{U}_q$ be a certain algebra automorphism, which is a q-analogue of $\bar{s}_i \circlearrowright \mathbf{U}(\mathfrak{g})$ $(T_i = T'_{i,-1}$ in Lusztig's notation). For $w \in W$ and $\mathbf{i} = (i_1, \ldots, i_\ell) \in I(w)$, we have a well-defined automorphism $T_w := T_{i_1} \cdots T_{i_\ell}$. Set

$$F^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i}) := \prod_{k=1}^{\ell} q_{i_k}^{\frac{1}{2}c_k(c_k-1)} (1 - q_{i_k}^2)^{c_k} T_{i_1} \cdots T_{i_{\ell-1}}(f_{i_{\ell}}^{c_{\ell}}) \cdots T_{i_1}(f_{i_2}^{c_2}) f_{i_l}^{c_l},$$

where $\boldsymbol{c} = (c_1, \ldots, c_\ell) \in \mathbb{Z}_{\geq 0}^{\ell}$, called an (upper) PBW-basis element. (e.g. $\mathfrak{g} = \mathfrak{sl}_3$, $T_1(f_2) = f_1 f_2 - q f_2 f_1$.) The set $\{F^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i})\}_{\boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\ell}}$ is a linearly independent set of \mathbf{U}_q^- .

Fact (The quantum nilpotent subalgebras $\mathbf{U}_{q}^{-}(w)$)

Denote by $\mathbf{U}_q^-(w)$ the subspace of \mathbf{U}_q^- spanned by $\{F^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i})\}_{\boldsymbol{c}}$. In fact these subspaces are subalgebras and do not depend on the choice of $\boldsymbol{i} \in I(w)$.

Hironori Oya (The University of Tokyo)

Quantum nilpotent subalgebras (2)

Quantum nilpotent subalgebras are known to be compatible with dual canonical bases.

Proposition (Kimura)

Let
$$w \in W$$
 and $i \in I(w)$. Then
(1) $\mathbf{U}_{q}^{-}(w) \cap \mathbf{B}^{\mathrm{up}}$ is a basis of $\mathbf{U}_{q}^{-}(w)$.
(2) For every element $G^{\mathrm{up}}(b)$ of $\mathbf{U}_{q}^{-}(w) \cap \mathbf{B}^{\mathrm{up}}$ there uniquely exists
 $\mathbf{c} \in \mathbb{Z}_{\geq 0}^{\ell}$ such that
 $G^{\mathrm{up}}(b) = F^{\mathrm{up}}(\mathbf{c}, i) + \sum_{\mathbf{c}' < \mathbf{c}} d^{i}_{\mathbf{c},\mathbf{c}'} F^{\mathrm{up}}(\mathbf{c}', i)$ with $d^{i}_{\mathbf{c},\mathbf{c}'} \in q\mathbb{Z}[q]$.
Here $<$ denotes the left lexicographic order on $\mathbb{Z}_{\geq 0}^{\ell}$.
We denote by $b(\mathbf{c}, i)$ the corresponding crystal basis element.

$$\begin{array}{l} \ln \text{ fact} \\ \left(\mathbf{U}_{q}^{-}(w)\right)^{\mathbb{Z}} := \sum_{\boldsymbol{c} \in \mathbb{Z}_{\geq 0}^{\ell}} \mathbb{Z}[q^{\pm 1}] G^{\mathrm{up}}\left(b\left(\boldsymbol{c},\boldsymbol{i}\right)\right) \xrightarrow{``q \to 1"} \mathbb{C}[N_{-}(w)]. \end{array}$$

Unipotent quantum minors

For $\lambda \in P_+$, denote by $V(\lambda)$ the integrable highest weight \mathbf{U}_q -module generated by a highest weight vector v_λ of weight λ . For $w \in W$ and $\mathbf{i} \in I(w)$, set

$$v_{w\lambda} = f_{i_1}^{(\langle s_{i_2} \cdots s_{i_\ell} \lambda, \alpha_{i_1}^{\vee} \rangle)} \cdots f_{i_{\ell-1}}^{(\langle s_{i_\ell} \lambda, \alpha_{i_{\ell-1}}^{\vee} \rangle)} f_{i_\ell}^{(\langle \lambda, \alpha_{i_\ell}^{\vee} \rangle)} v_{\lambda}.$$

There exists a unique nondegenerate and symmetric bilinear form $(,)_{\lambda} \colon V(\lambda) \times V(\lambda) \to \mathbb{Q}(q)$ such that

$$(v_{\lambda}, v_{\lambda})_{\lambda} = 1$$
 $(x.v_1, v_2)_{\lambda} = (v_1, x^T.v_2)_{\lambda}$

for $v_1, v_2 \in V(\lambda)$ and $x \in \mathbf{U}_q$.

Definition (Unipotent quantum minors)

For $\lambda \in P_+$ and $u, w \in W$ with $u\lambda - w\lambda \in -\sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i$, define the element $D_{u\lambda,w\lambda} \in \mathbf{U}_q^-$ by the following property:

$$(D_{u\lambda,w\lambda},x)_L = (v_{u\lambda},x.v_{w\lambda})_\lambda$$
 for $x \in \mathbf{U}_q^-$.

Proposition (Kashiwara)

The unipotent quantum minors are elements of B^{up} .

In fact
$$F^{\text{up}}((0, \dots, \overset{k}{\downarrow}, \dots, 0), \boldsymbol{i})$$
 is a unipotent quantum minor.

Proposition

Let $\lambda \in P_+$ and $u_1, u_2, w \in W$. Suppose that u_1 is less than or equal to w with respect to the weak right Bruhat order, that is, there exists $\mathbf{i} = (i_1, i_2, \dots, i_\ell) \in I(w)$ such that $(i_1, i_2, \dots, i_k) \in I(u_1)$ for some $k \in \{1, \dots, \ell\}$. Then

$$D_{u_1\lambda,u_2\lambda} \in \mathbf{U}_q^-(w).$$

Quantum twist maps

Recall the q = 1 case: $\tau_w(y_-) := \bar{w}(y_-^{\vee})^{-1} \bar{w}^{-1}$. Let $\vee : \mathbf{U}_q \to \mathbf{U}_q$ be the $\mathbb{Q}(q)$ -algebra involution defined by

$$e_i^{\vee} = f_i, \qquad f_i^{\vee} = e_i, \qquad (q^h)^{\vee} = q^{-h}$$

Definition (Quantum twist maps [Lenagan-Yakimov])

For $w\in W,$ we consider the $\mathbb{Q}(q)\text{-algebra anti-automorphism }\Theta_w$ of \mathbf{U}_q defined by

$$\Theta_w := T_w \circ S \circ \vee.$$

We have $(\Theta_w)^{-1} = \Theta_{w^{-1}}$. For a homogeneous element $x \in \mathbf{U}_q$, we have $\operatorname{wt}(\Theta_w(x)) = -w \operatorname{wt}(x)$.

Main results

Notation

(1) For
$$\boldsymbol{i} = (i_1, \cdots, i_\ell) \in I(w)$$
, we set $\boldsymbol{i}^{\text{rev}} = (i_\ell, \cdots, i_1) \in I(w^{-1})$.
(2) For $\boldsymbol{c} = (c_1, \cdots, c_\ell) \in \mathbb{Z}_{\geq 0}^\ell$, we set $\boldsymbol{c}^{\text{rev}} := (c_\ell, \cdots, c_1) \in \mathbb{Z}_{\geq 0}^\ell$.

Theorem (Kimura-O)

Let $w \in W$ and $i \in I(w)$. For $G^{up}(b(c, i)) \in \mathbf{B}^{up} \cap \mathbf{U}_q^{-}(w)$, we have

$$\Theta_{w^{-1}}\left(G^{\mathrm{up}}\left(b\left(\boldsymbol{c},\boldsymbol{i}\right)\right)\right) = G^{\mathrm{up}}\left(b\left(\boldsymbol{c}^{\mathrm{rev}},\boldsymbol{i}^{\mathrm{rev}}\right)\right) \in \mathbf{B}^{\mathrm{up}} \cap \mathbf{U}_{q}^{-}(w^{-1}).$$

Theorem (Kimura-O)

Let $\lambda \in P_+$ and $u_1, u_2 \in W$. Suppose that u_1 and u_2 are less than or equal to w with respect to the weak right Bruhat order. Then we have

$$\Theta_{w^{-1}}(D_{u_1\lambda,u_2\lambda}) = D_{w^{-1}u_2\lambda,w^{-1}u_1\lambda}.$$

Examples

Example

For $w \in W$ and $\boldsymbol{i} = (i_1, \cdots, i_\ell) \in I(w)$, we have

$$\Theta_{w^{-1}}\left((1-q_{i_k}^2)T_{i_1}\cdots T_{i_{k-1}}(f_{i_k})\right) = (1-q_{i_k}^2)T_{i_\ell}\cdots T_{i_{k+1}}(f_{i_k}).$$

(We use this fact in order to prove our main theorem.)

Example

Let $\mathfrak{g} = \mathfrak{sl}_3$ and $w = s_2s_1$. Define $\rho \in P$ by $\langle \rho, \alpha_i^{\vee} \rangle = 1$ (i = 1, 2). Then $D_{s_2s_1\rho,\rho}, D_{s_2s_1\rho,s_1\rho} \in \mathbf{U}_q^-(s_2s_1)$ by Proposition. Now $D_{s_2s_1\rho,\rho}$ satisfies the assumption of our second main theorem while $D_{s_2s_1\rho,s_1\rho}$ does not. In fact $\Theta_{s_1s_2}(D_{s_2s_1\rho,\rho}) = D_{s_1s_2\rho,\rho}$ but $\Theta_{s_1s_2}(D_{s_2s_1\rho,s_1\rho}) \neq D_{-\rho,\rho}$. Indeed $D_{-\rho,\rho} \notin \mathbf{U}_q^-(s_1s_2)$. Use the characterization of the dual canonical basis element $G^{\mathrm{up}}(b(\boldsymbol{c},\boldsymbol{i}))$, that is, dual-bar invariance and "unitriangular property". \rightsquigarrow We check the compatibility between Θ_w and PBW-bases, the dual-bar involution.

For proving our second theorem, we use our first theorem and the following lemma (Form preserving property):

Lemma

Let $w \in W$. Then we have

$$(x,y)_L = (\Theta_{w^{-1}}(x), \Theta_{w^{-1}}(y))_L$$

for all $x, y \in \mathbf{U}_q^-(w)$.

Corollary

The following coincidence of coefficients is the immediate corollary of our results.

Corollary

Let $w \in W$ and $i \in I(w)$. Write

$$F^{\mathrm{up}}\left(\boldsymbol{c},\boldsymbol{i}\right) = \sum_{\boldsymbol{c}' \in \mathbb{Z}_{\geq 0}^{\ell}} \left[F^{\mathrm{up}}\left(\boldsymbol{c},\boldsymbol{i}\right) : G^{\mathrm{up}}\left(b\left(\boldsymbol{c}',\boldsymbol{i}\right)\right)\right] G^{\mathrm{up}}\left(b\left(\boldsymbol{c}',\boldsymbol{i}\right)\right).$$

Then we have

$$[F^{\mathrm{up}}\left(\boldsymbol{c},\boldsymbol{i}\right):G^{\mathrm{up}}\left(b\left(\boldsymbol{c}',\boldsymbol{i}\right)\right)] = \left[F^{\mathrm{up}}\left(\boldsymbol{c}^{\mathrm{rev}},\boldsymbol{i}^{\mathrm{rev}}\right):G^{\mathrm{up}}\left(b\left(\left(\boldsymbol{c}'\right)^{\mathrm{rev}},\boldsymbol{i}^{\mathrm{rev}}\right)\right)\right]$$

In particular, we can write the expansion as follows: $F^{\mathrm{up}}(\boldsymbol{c}, \boldsymbol{i})$

$$= G^{\mathrm{up}}\left(b\left(\boldsymbol{c},\boldsymbol{i}\right)\right) + \sum_{\boldsymbol{c}' < \boldsymbol{c}, \ \left(\boldsymbol{c}'\right)^{\mathrm{rev}} < \boldsymbol{c}^{\mathrm{rev}}} \left[F^{\mathrm{up}}\left(\boldsymbol{c},\boldsymbol{i}\right) : G^{\mathrm{up}}\left(b\left(\boldsymbol{c}',\boldsymbol{i}\right)\right)\right] G^{\mathrm{up}}\left(b\left(\boldsymbol{c}',\boldsymbol{i}\right)\right).$$