
Similarities in the finite-dimensional
representation theory for quantum affine algebras

of several different types

Hironori OYA

Shibaura Institute of Technology

Based on a joint work with David HERNANDEZ

Colloquium
Shibaura Institute of Technology, October 12, 2018

Hironori OYA (SIT) Similarities in quantum affine algebras October 12, 2018 1 / 24



Representation theory

Representation theory =
Study of vector spaces endowed with “a fixed symmetry”

“a fixed symmetry” =
various mathematical objects having “an algebraic structure”

For example,

Groups (finite groups, Gal(Q/Q), GLn, SLn, SOn, Spn, . . . )

Associative algebras (path algebras, coordinate algebras,
quantum groups, . . . )

Lie algebras (gln, sln, gln[t±1], sln[t±1], Virasoro algebras, . . . )

Vertex operator algebras

· · ·
 The world of Representation theory is quite rich and extensive !
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Representation theory of sl2(C)

We review the representation theory of the Lie algebra sl2(C).

A C-vector space g equipped with [ , ] : g× g→ g is a Lie algebra
def⇔

[ , ] is a bilinear map,

[x, y] = −[y, x],∀x, y ∈ g,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, z ∈ g (Jacobi identity).

Typical example : Let V be a vector space.

EndC(V ) is a Lie algebra by the operation [x, y] := xy − yx

(This is denoted by gl(V ))

sl2(C) := {x ∈ Mat2(C)|Trace(x) = 0}
 sl2(C) is a Lie algebra by the operation [x, y] := xy − yx.
Explicit description Standard basis of sl2(C) :

e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
.

Formulas of brackets :

[h, e] = 2e [h, f ] = −2f [e, f ] = h.
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Appearance of sl2(C)

Appearance of sl2(C)

Cross product of vectors in the three dimensional space (over C)

e1 × e2 = e3 e2 × e3 = e1 e3 × e1 = e2.

If we set


e := ie1 + e2,

f := ie1 − e2,

h := −2ie3,

then


h× e = 2e,

h× f = −2f,

e× f = h.

Angular momentum operators (quantum mechanics)

[Lx, Ly] = i~Lz [Ly, Lz] = i~Lx [Lz, Lx] = i~Ly.

If we set


e := (Lx + iLy)/~,
f := (Lx − iLy)/~,
h := 2Lz/~,

then


[h, e] = 2e,

[h, f ] = −2f,

[e, f ] = h.
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Representation theory of sl2(C) (2)

What is a vector space V endowed with the symmetry of sl2(C) ?

 V with a C-linear map π : sl2(C)→ EndC(V ) such that

π([x, y]) = π(x)π(y)− π(y)π(x), ∀x, y ∈ sl2(C).

(Namely, a Lie algebra homomorphism π : sl2(C)→ gl(V ).)

Such π is called a representation of sl2(C).

Easy examples of π :

zero map sl2(C)→ EndC(V ), x 7→ 0,∀x. (trivial).

inclusion map sl2(C) ↪→ Mat2(C) ' EndC(C2) (fundamental)
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Representation theory of sl2(C) (3)

Systematic construction : Consider the polynomial algebra C[u, v].
As linear operators on C[u, v], set

De := u
∂

∂v
Df := v

∂

∂u
Dh := u

∂

∂u
− v ∂

∂v
.

Then,

[De, Df ] = Dh [Dh, De] = 2De [Dh, Df ] = −2Df .

Moreover, De, Df , Dh preserve the degree of polynomials. Therefore,
∀n ∈ Z≥0 ∃ a representation πn : sl2(C)→ EndC(C[u, v]n) given by

e 7→ De f 7→ Df h 7→ Dh,

here C[u, v]n is the (n+ 1)-dimensional subspace of C[u, v] spanned
by the polynomials of degree n.
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Representation theory of sl2(C) (4)

Structure of πn :

0
De← un

De

�
Df

un−1v
De

�
Df

· · ·
De

�
Df

uvn−1
De

�
Df

vn →
Df

0

Moreover Dh.u
n−kvk = (n− 2k)un−kvk

un−kvk is called a weight vector of weight n− 2k (eigenvalue of
πn(h)).

un is called a highest weight vector of highest weight n.

vn is called a lowest weight vector of lowest weight −n.

Record the weights of πn

 ch(πn) = en$ + e(n−2)$ + · · ·+ e(−n+2)$ + e−n$ (e$ : symbol)

=
e(n+1)$ − e−(n+1)$

e$ − e−$
the character of πn
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Representation theory of sl2(C) (5)

Results in the representation theory of sl2(C)

(Semisimplicity) If π : sl2(C)→ EndC(V ) is a finite dimensional
representation, then

V
always
=====

⊕
(π(sl2(C))-stable minimal subspace)︸ ︷︷ ︸

irreducible representation

.

(Classification) For n ∈ Z≥0, πn is irreducible, and

Z≥0
1:1↔ {irreducible representation of sl2(C)} / '

∈ ∈

n ↔ [πn]

 The subspace {v ∈ V | π(e).v = 0} and the action of π(h) on
this space determine the whole V (dimension, basis,...) !!
In particular, ch(π) determines the isomorphism class of π.
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Complex simple Lie algebras

Cartan-Killing classification of simple Lie algebras over C (1890’s) :

Type An

sln+1(C) := {x ∈ Matn+1(C)|Trace(x) = 0}

Type Bn

so2n+1(C) :=
{
x ∈ Mat2n+1(C)

∣∣xT + x = 0
}

Type Cn

sp2n(C) :=

{
x ∈ Mat2n(C)

∣∣∣∣xT ( 0 In
−In 0

)
+

(
0 In
−In 0

)
x = 0

}
Type Dn

so2n(C) :=
{
x ∈ Mat2n(C)

∣∣xT + x = 0
}

Type E6,E7,E8,F4,G2 (exceptional types)
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Representation theory of g

Let g be a simple Lie algebra over C of type Xn (X = A,B, . . . ).

Results in the representation theory of g

(Semisimplicity) If π : g→ EndC(V ) is a finite dimensional
representation, then

V
always
=====

⊕
(π(g)-stable minimal subspace).

(Classification)
n∑
i=1

Z≥0$i
1:1↔ {irreducible representation of g} / '

∈ ∈
λ ↔ [πλ]
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Representation theory of g (2)

For a finite dimensional representation π of g, we can also define the
character ch(π) of π.

Theorem (The Weyl character formula 1920’s)

For λ ∈
∑n

i=1 Z≥0$i, we have

ch(πλ) =

∑
w∈W (−1)`(w)ew(λ+ρ)−ρ∏

α∈∆+
(1− e−α)

,

here

W the Weyl group, `(w) the length of w,

ρ :=
∑n

i=1 $i the Weyl vector,

∆+ the set of positive roots.
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Quantum Yang-Baxter equation

We consider the deformation of the representation of g. ← Why ?
Original motivation : Let V be a vector space. An element
R ∈ EndC(V ⊗2) is said to be a solution of the quantum Yang-Baxter
equation if R satisfies

(R⊗ id)(id⊗R)(R⊗ id) = (id⊗R)(R⊗ id)(id⊗R)

in EndC(V ⊗3). This is a fundamental equation in the theory of
integrable systems (quantum inverse scattering method).

This equation is also important in representation theory itself, knot
theory, etc.
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Quantum Yang-Baxter equation (2)

Basic idea for the construction of R : R is constructed as an
intertwiner of tensor product representations (V = V1 = V2 = V3):

V1 ⊗ V2 ⊗ V3

id⊗R
∼

''
V1 ⊗ V3 ⊗ V2

R⊗id
∼

77
V2 ⊗ V1 ⊗ V3 id⊗R

∼ // V2 ⊗ V3 ⊗ V1

R⊗id
∼

// V3 ⊗ V1 ⊗ V2

R⊗id
∼

''

id⊗R
∼

77V3 ⊗ V2 ⊗ V1	

Why representation theory is powerful ?
Philosophy : equalities among intertwiners
reduce
 equalities among the images of highest weight vectors under

intertwiners (the images of others are determined automatically by
the Lie algebra symmetry !!)
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Motivation of deformation

Unfortunately, representation theory of Lie algebras does not produce
the interesting solutions...because the usual flip

V1 ⊗ V2
∼→ V2 ⊗ V1, v1 ⊗ v2 7→ v2 ⊗ v1 (1)

already gives a nice intertwiner.
In fact, ∃ associative Hopf algebra U(g) such that

representations of g=representations of U(g).

This Hopf algebra U(g) is called the universal enveloping algebra of g.
The coproduct of U(g) is co-commutative. This is the reason of (1).

U(g)
not co-commutative

 
Hopf algebra

Uq(g) quantum group !!
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Quantum groups

Let g be a simple Lie algebra and q ∈ C× not a root of 1.
 We can define a quantum group Uq(g). (Drinfeld, Jimbo mid
1980’s)

The quantized enveloping algebra Uq(sl2(C)) is the C-algebra
generated by

E,F, q±H ,

with the following relations:
(i) qHq−H = 1 = q−HqH

(ii) qHE = q2EqH , qHF = q−2FqH ,

(iii) [E,F ] =
qH − q−H

q − q−1

Coproduct ∆ of Uq(sl2(C)) :

∆(E) = E ⊗ q−H + 1⊗ E, ∆(F ) = F ⊗ 1 + qH ⊗ F, ∆(qH) = qH ⊗ qH .
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Representation theory of quantum groups

Let g be a simple Lie algebra over C of type Xn (X = A,B, . . . ).
Then the representation theory of Uq(g) is parallel to that of g :

Results in the representation theory of Uq(g)

(Semisimplicity) If πq : Uq(g)→ EndC(V ) is a finite dimensional
representation, then

V
always
=====

⊕
(π(Uq(g))-stable minimal subspace).

(Classification)
n∑
i=1

Z≥0$i
1:1↔ {irreducible representation of Uq(g) of type 1} / '

∈ ∈

λ ↔ [πqλ]

We can define the notion of character ch, and ch(πqλ) satisfies
the Weyl character formula.
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Representation theory of quantum groups (2)

Let V1, V2 be finite dimensional representations of Uq(g). Then

V1 ⊗ V2 ' V2 ⊗ V1

HOWEVER, this isomorphism is not given by the usual flip but given
by “universal R-matrix” !! (← this non-trivial intertwiner satisfies
quantum Yang-Baxter equation.)

Example (Uq(sl2(C)), V1 = V2 = C2 (fundamental))

Let {e1, e2} be the canonical basis of C2. Take the basis of (C2)⊗2

as {e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2}. Then,

R-matrix for Uq(sl2(C))
1 0 0 0
0 0 q 0
0 q 1− q2 0
0 0 0 1


Usual flip

� q=1 //


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


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Quantum loop algebras

If we consider quantum loop algebras, then we can obtain more
interesting solutions :
For a simple Lie algebra g, we can consider the loop Lie algebra
Lg := g⊗ C[t±1] equipped with the bracket

[x⊗ tm, y ⊗ tm′ ] := [x, y]⊗ tm+m′ .

The quantum loop algebra Uq(Lg) is a q-deformation of the universal
enveloping algebra U(Lg) of Lg. When g is a simple Lie algebra of

type Xn, the quantum loop algebra Uq(Lg) is said to be of type X
(1)
n .

Properties

Uq(Lg) has a Hopf algebra structure.

Uq(g) ↪→ Uq(Lg) as a Hopf algebra.
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Quantum loop algebras (2)

We again consider the case of sl2(C).
 Any representation V of Uq(sl2(C)) gives rise to

a 1-parameter family Vz (z ∈ C×)

of representations of Uq(Lsl2(C)). Generically, Vz1 ⊗ Vz2 ' Vz2 ⊗ Vz1
 more non-trivial solutions !!

Example

In the setting of previous example, C2
z1
⊗ C2

z2
' C2

z2
⊗ C2

z1
gives the

following R-matrix (ξ := z1/z2) :

R-matrix for Uq(Lsl2(C))

R(ξ) =


1 0 0 0

0 ξ(1−q2)
1−ξq2

q(1−ξ)
1−ξq2 0

0 q(1−ξ)
1−ξq2

(1−q2)
1−ξq2 0

0 0 0 1


R-matrix for Uq(sl2(C))

� ξ=0 //


1 0 0 0
0 0 q 0
0 q 1− q2 0
0 0 0 1



This R(ξ) gives the solution of the quantum Yang-Baxter equation
with spectral parameter :

(R(ξ)⊗id)(id⊗R(ξη))(R(η)⊗id) = (id⊗R(η))(R(ξη)⊗id)(id⊗R(ξ))

(This solution is important for “the 6-vertex model”)
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Quantum loop algebras (2)

This observation gives motivation to study finite dimensional
representations of Uq(Lg). However, they are rather difficult and
quite different from those of Uq(g) and Lg...

There exists a highest weight classification of irreducible
representations, BUT semisimplicity does not hold.

There exists a notion of character (called q-character), BUT 6 ∃
known closed formulae for the q-characters of irreducible
representations in general.

Sometimes, V ⊗W 6' W ⊗ V . Note that R(ξ) has a pole at
ξ = q−2. Indeed, if z1/z2 = q−2, then C2

z1
⊗ C2

z2
6' C2

z2
⊗ C2

z1
.
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Research theme

Let C
X

(1)
n

be the category of finite dimensional representations of

Uq(Lg) of type X
(1)
n .

Recently, similarities among C
X

(1)
n

have been recognized.
(Frenkel-Hernandez, Kashiwara-Kim-Oh, Oh-Scrimshaw, Hernandez-O.,. . . )

Observation :
C

A
(1)
2n−1

similar∼ C
B

(1)
n

C
D

(1)
n+1

similar∼ C
C

(1)
n

C
E
(1)
6

similar∼ C
F
(1)
4

C
D

(1)
4

similar∼ C
G

(1)
2

Hope : Become able to study the category C
X

(1)
m

by using its paired
category C

Y
(1)
n

!!

There are no known direct relations between the quantum loop
algebras of type X

(1)
m and Y

(1)
n themselves.
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Main result

Notation
For an (artinian and noetherian) monoidal abelian category A, write
its Grothendieck ring as K(A).

spanned by the isomorphism classes of Obj(A),

short exact sequences in A  addition in K(A),

tensor product in A  product in K(A).

Theorem (Kashiwara-Oh ’17, Oh-Scrimshaw ’18)

For each pair C
X

(1)
m
∼ C

Y
(1)
n

appearing above, ∃ “not-small” monoidal
abelian subcategories CQ,X(1)

m
⊂ C

X
(1)
m
, CQ′,Y(1)

n
⊂ C

Y
(1)
n

such that

K(CQ,X(1)
m

)
algebra
' K(CQ′,Y(1)

n
),
{

q-characters
of irred. rep’s

}
↔
{

q-characters
of irred. rep’s

}
.

There exists a “t-deformation” Kt(CX
(1)
m

) of K(C
X

(1)
m

) for all X.

Theorem (Hernandez-O. ’18, arXiv:1803.06754)

Kt(CQ,A(1)
2n−1

)
algebra
' Kt(CQ′,B(1)

n
),
{

(q, t)-characters
of irred. rep’s

}
↔
{

(q, t)-characters
of irred. rep’s

}
.

Moreover, we gave an explicit correspondence of irreducible
representations in terms of highest weights.
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Quantum Grothendieck rings

What is a “t-deformation” Kt(CX
(1)
m

) of K(C
X

(1)
m

) ?

 A Z[t±1/2]-algebra with Kt=1(C
X

(1)
m

) = K(C
X

(1)
m

) introduced by

– (X = ADE case) Nakajima ’04 in a geometric way via quiver
varieties

– (X : arbitrary) Hernandez ’04 in an algebraic way
6 ∃ geometry for non-ADE cases

 Kt(CX
(1)
m

) provides algorithm to compute the “(q, t)-characters” of
irreducible representations ! “Kazhdan-Lusztig algorithm”
This algorithm essentially uses the bar-involution ( · ), t1/2 7→ t−1/2.

Nakajima’s geometric construction guarantees that

the (q, 1)-character of irred. rep. = the q-character of irred. rep.

In non-ADE cases, the (q, 1)-characters are still candidates of the
q-characters.
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m
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∑
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Pm,m′(t) ∈ t−1Z[t−1].
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Application of our main result

Theorem (Hernandez-O.)

The (q, t)-characters of irreducible representations in CQ,B(1)
n

specialize to the corresponding q-characters at t = 1.

Strategy of proofs : Prove that our isomorphism specialize to
Kashiwara-Oh’s isomorphism at t = 1.

A priori,

Kashiwara-Oh’s isomorphism maps the q-characters of irred.
rep’s in CQ,A(1)

2n−1
to the q-characters of irred. rep’s in CQ,B(1)

n
,

Our isomorphism at t = 1 maps the (q, 1)-characters (= the
q-characters ← type A !) of irred. rep’s in CQ,A(1)

2n−1
to the

(q, 1)-characters of irred. rep’s in CQ,B(1)
n

.

Reference : arXiv:1803.06754
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