Representations of quantized function algebras and the transition matrices from Canonical bases to PBW bases

Hironori Oya

The University of Tokyo

MSJ Spring Meeting 2015 Meiji University, 23/3/2015

Hironori Oya (The University of Tokyo)

Representations of QFAs

MSJ Spring Meeting 2015 1 / 16

- Our main theorem
- 3 Quantized function algebras
- Our strategy for proving positivity

- $\bullet \ \mathfrak{g}$ a finite dimensional complex simple Lie algebra
- $U_q(\mathfrak{g}) = \langle E_i, F_i, K_i | i \in I \rangle_{\mathbb{Q}(q)\text{-algebra}}$ the quantized enveloping algebra/ $\mathbb{Q}(q)$ (a q-analogue of $U(\mathfrak{g})$)

•
$$U_q(\mathfrak{n}^+) = \langle E_i | i \in I \rangle_{\mathbb{Q}(q)}$$
-algebra

The quantized enveloping algebra $U_q(\mathfrak{g})$ has a Hopf algebra structure. In particular, its coproduct Δ is defined as follows:

$$\Delta(E_i) = E_i \otimes 1 + K_i \otimes E_i, \ \Delta(F_i) = F_i \otimes K_{-i} + 1 \otimes F_i, \ \Delta(K_i) = K_i \otimes K_i.$$

Some operations

Definition

We define the $\mathbb{Q}(q)$ -algebra involution $\omega: U_q(\mathfrak{g}) \to U_q(\mathfrak{g})$ by

$$\omega(E_i) = F_i, \ \omega(F_i) = E_i, \ \omega(K_i) = K_i^{-1}.$$

We define the $\mathbb{Q}(q)$ -algebra anti-involution $*: U_q(\mathfrak{g}) \to U_q(\mathfrak{g})$ by

$$*(E_i) = E_i, \ *(F_i) = F_i, \ *(K_i) = K_i^{-1}.$$

We define the \mathbb{Q} -algebra involution $\overline{(\cdot)}: U_q(\mathfrak{g}) \to U_q(\mathfrak{g})$ by

$$\overline{E_i} = E_i, \ \overline{F_i} = F_i, \ \overline{K_i} = K_i^{-1}, \ \overline{q} = q^{-1}.$$

PBW bases

Let $\mathbf{i} = (i_1, i_2, \dots, i_N)$ be a reduced word of the longest element w_0 of the Weyl group W. (i.e. $w_0 = s_{i_1}s_{i_2}\cdots s_{i_N}$. In particular, N := the length of w_0 .)

Definition (The PBW bases)

The vectors

$$\left\{ E_{\mathbf{i}}^{\mathbf{c}} := E_{i_1}^{(c_1)} T_{i_1,1}'(E_{i_2}^{(c_2)}) \cdots T_{i_1,1}' T_{i_2,1}' \cdots T_{i_{N-1},1}'(E_{i_N}^{(c_N)}) \right\}_{\mathbf{c}}$$

 $(\mathbf{c} = (c_1, c_2, \dots, c_N) \in (\mathbb{Z}_{\geq 0})^N)$ forms a basis of $U_q(\mathfrak{n}^+)$. Here, $T'_{i,1}$ is a q-analogue of "the action of the braid group".

Remark

For any reduced word $\mathbf{i} = (i_1, i_2, \dots, i_N)$ of w_0 , we have

$$\Delta_{+} = \{\beta_{\mathbf{i}}^{1}, \beta_{\mathbf{i}}^{2}, \dots, \beta_{\mathbf{i}}^{N}\} \text{ where } \beta_{\mathbf{i}}^{k} := s_{i_{1}} \cdots s_{i_{k-1}}(\alpha_{i_{k}}).$$

Canonical bases

Let i be a reduced word of w_0 . Then, there uniquely exists a basis $\{G^{(c)}\}_c$ of $U_q(\mathfrak{n}^+)$ such that

•
$$\overline{G^{(\mathbf{c})}} = G^{(\mathbf{c})}$$

•
$$G^{(\mathbf{c})} = E_{\mathbf{i}}^{\mathbf{c}} + \sum_{\mathbf{d} > \mathbf{c}} {}_{\mathbf{i}} \zeta_{\mathbf{d}}^{\mathbf{c}} E_{\mathbf{i}}^{\mathbf{d}}$$
 with ${}_{\mathbf{i}} \zeta_{\mathbf{d}}^{\mathbf{c}} \in q\mathbb{Z}[q]$.

We consider the lexicographic order on $(\mathbb{Z}_{\geq 0})^N$.

Definition (The canonical basis)

We call $\{G^{(\mathbf{c})}\}_{\mathbf{c}}$ the canonical basis of $U_q(\mathfrak{n}^+)$.

Remark

The definition of canonical basis does not depend on the choice of i. (The data (c) depend on i.)

Theorem (Positivity)

Assume that the Lie algebra \mathfrak{g} is of type ADE. Take an arbitrary reduced word \mathbf{i} of w_0 . Then, for any $\mathbf{c} \in (\mathbb{Z}_{\geq 0})^N$, we have

$$G^{(\mathbf{c})} = E_{\mathbf{i}}^{\mathbf{c}} + \sum_{\mathbf{d} > \mathbf{c}} {}_{\mathbf{i}} \zeta_{\mathbf{d}}^{\mathbf{c}} E_{\mathbf{i}}^{\mathbf{d}} \text{ with } {}_{\mathbf{i}} \zeta_{\mathbf{d}}^{\mathbf{c}} \in q \mathbb{N}[q].$$

Remark

In general, it is difficult to describe the explicit form of the element of the canonical basis.

The positivity of these coefficients was originally proved by

- Lusztig (1990) : for the "adapted" reduced word \mathbf{i} of w_0 (via "geometric realization")
- Kato (2014) : for the arbitrary case (via "categorification")

We gave a new algebraic proof of the above theorem from now on. (It has been recently found that our "calculation procedure" is same as a certain other calculation procedure.)

From now on, we again assume that \mathfrak{g} is a finite dimensional complex simple Lie algebra.

Quantized function algebras

The dual space $U_q(\mathfrak{g})^*$ of $U_q(\mathfrak{g})$ has a $\mathbb{Q}(q)$ -algebra structure induced from the coalgebra structure of $U_q(\mathfrak{g})$.

Definition (The quantized function algebra)

The quantized function algebra $\mathbb{Q}_q[G]$ is a subalgebra of $U_q(\mathfrak{g})^*$ generated (in fact, spanned) by the matrix coefficients

$$c_{f,v}^{\lambda} \mapsto (u \mapsto \langle f, u.v \rangle),$$

here,

- $\lambda \in P_+(=$ the set of dominant integral weight),
- $V(\lambda)$ the integrable highest weight $U_q(\mathfrak{g})\text{-module}$ with highest weight λ ,

•
$$f \in V(\lambda)^*, v \in V(\lambda).$$

Then, $\mathbb{Q}_q[G]$ has a Hopf algebra structure induced from the one of $U_q(\mathfrak{g})$ and a left and right $U_q(\mathfrak{g})$ -algebra structure.

 $\mathbb{Q}_q[G]$ - a quantum analogue of the algebra of regular functions on G (G is the connected simply connected simple complex algebraic group whose Lie algebra is \mathfrak{g} .)

The algebra $\mathbb{Q}_q[G]$ has infinite dimensional irreducible modules [This point is extremely different from the classical(="q = 1") situation!!]:

$$\mathbb{Q}_q[G] \twoheadrightarrow \mathbb{Q}_{q_i}[SL_2] \frown V_i := \bigoplus_{m \in \mathbb{Z}_{\geq 0}} \mathbb{Q}(q) |m\rangle\rangle_i.$$

(dual to $U_{q_i}(\mathfrak{sl}_2) \hookrightarrow U_q(\mathfrak{g})$.)

Theorem (Soibelman (1990))

Let $w \in W$. Then, for any reduced expression $w = s_{i_1} \cdots s_{i_l}$, the $\mathbb{Q}_q[G]$ -module $V_{i_1} \otimes \cdots \otimes V_{i_l}$ is irreducible and its isomorphism class does not depend on the choice of the reduced expressions. Hence, we denote this module by V_w .

Theorem (O-)

For $x \in U_q(\mathfrak{n}^+), \lambda \in P_+$ and a reduced word \mathbf{i} of w_0 , we write

$$x = \sum_{\mathbf{c} \in (\mathbb{Z}_{\geq 0})^N} {}_{\mathbf{i}} \zeta_{\mathbf{c}}^x E_{\mathbf{i}}^{\mathbf{c}} \text{ with } {}_{\mathbf{i}} \zeta_{\mathbf{c}}^x \in \mathbb{Q}(q), \text{ and}$$

$$(c_{f_{\lambda},v_{w_{0}\lambda}}^{\lambda}.*(x)).|(0)\rangle\rangle_{\mathbf{i}} = \sum_{\mathbf{c}\in(\mathbb{Z}_{\geq 0})^{N}}{}_{\mathbf{i}}\zeta_{\mathbf{c}}^{\lambda,x}|(\mathbf{c})\rangle\rangle_{\mathbf{i}} \text{ with } {}_{\mathbf{i}}\zeta_{\mathbf{c}}^{\lambda,x} \in \mathbb{Q}(q)(\text{in } V_{w_{0}}).$$

(Here, f_{λ} is a highest weight vector of $V(\lambda)^*$ which sends a fixed highest weight vector v_{λ} of $V(\lambda)$ to 1, and $v_{w_0\lambda}$ is the lowest weight lower global basis element of $V(\lambda)$.)

When $\lambda \in P_+$ tends to ∞ in the sense that $\langle \lambda, \alpha_i^{\vee} \rangle$ tends to ∞ for all $i \in I_{,i} \zeta_{\mathbf{c}}^{\lambda,x}$ converges to $_{\mathbf{i}} \zeta_{\mathbf{c}}^x$ in the complete discrete valuation field $\mathbb{Q}((q))$.

For sufficiently large L, we set $\lambda_0 := 2(N+1)L\rho$. $\rho :=$ the Weyl vector. Then, by the calculation method of the previous theorem, we can obtain

$$\begin{split} \left(c_{f_{\lambda_{0}},v_{w_{0}\lambda_{0}}}^{\lambda_{0}}.*(G^{(\mathbf{c})})\right).|(0)\rangle\rangle_{\mathbf{i}} &= \sum_{\mathbf{d} \geq \mathbf{c}} \mathbf{i}\zeta_{\mathbf{d}}^{\mathbf{c}}|(\mathbf{d})\rangle\rangle_{\mathbf{i}} + q^{L}\sum_{\mathbf{d}' \in (\mathbb{Z}_{\geq 0})^{N}} \eta_{\mathbf{d}'}|(\mathbf{d}')\rangle\rangle_{\mathbf{i}} \\ & \text{with } \eta_{\mathbf{d}'} \in \mathbb{Z}[q]. \\ (=:\sum_{\mathbf{d} \in (\mathbb{Z}_{\geq 0})^{N}} \mathbf{i}\zeta'_{\mathbf{d}}^{\mathbf{c}}|(\mathbf{d})\rangle\rangle_{\mathbf{i}}) \end{split}$$

On the other hand, we calculate the left-hand side of the previous equality as follows:

$$\begin{split} (c_{f_{\lambda_0},v_{w_0\lambda_0}}^{\lambda_0}\cdot\ast(G^{(\mathbf{c})})).|(0)\rangle\rangle_{\mathbf{i}} \\ &= \sum_{b'_1,\dots,b'_{N-1}\in B(\lambda_0)} c_{(G_{\lambda_0}^{\mathrm{low}}(b'_0),\cdot),G_{\lambda_0}^{\mathrm{up}}(b'_1)}^{\lambda_0}\cdot|0\rangle\rangle_{i_1}\otimes c_{(G_{\lambda_0}^{\mathrm{low}}(b'_1),\cdot),G_{\lambda_0}^{\mathrm{up}}(b'_2)}^{\lambda_0}\cdot|0\rangle\rangle_{i_2} \\ &\otimes\cdots\otimes c_{(G_{\lambda_0}^{\mathrm{low}}(b'_{N-1}),\cdot),v_{w_0\lambda_0}}^{\lambda_0}\cdot|0\rangle\rangle_{i_N}. \end{split}$$

Here,

• $(,): V(\lambda_0) \times V(\lambda_0) \to \mathbb{Q}(q)$ the "good" $\mathbb{Q}(q)$ -bilinear form • $\left\{ G_{\lambda_0}^{\mathrm{low}/\mathrm{up}}(b') \right\}_{b' \in B(\lambda_0)}$ the lower/upper global basis of $V(\lambda_0)$ • $G_{\lambda_0}^{\mathrm{low}}(b'_0) := \omega(G^{(\mathbf{c})}).v_{\lambda_0}$

We can deduce that:

Proposition

For each
$$k$$
, $c^{\lambda_0}_{(G^{\text{low}}_{\lambda_0}(b'_{k-1}),\cdot),G^{\text{up}}_{\lambda_0}(b'_k)} \cdot |0\rangle\rangle_{i_k} = p_k |c\rangle\rangle_{i_k}$,
with $c := -\frac{1}{2} \langle \operatorname{wt} b'_{k-1} + \operatorname{wt} b'_k, \alpha^{\vee}_{i_k} \rangle$ and $p_k \in q^{-L}\mathbb{Z}[q]$

•
$$_{\mathbf{i}}\zeta'^{\mathbf{c}}_{\mathbf{d}}\in\mathbb{Z}[q^{\pm1}]$$
, and

• we may ignore the degree $\geq NL$ part of the Laurent polynomial p_k for any k when calculating the degree < L parts of the Laurent polynomials $_{\mathbf{i}}\zeta'_{\mathbf{d}}^{\mathbf{c}}$.

Key: "the positivity of q-derivations" (Lusztig)

Remark

In our calculation, we use the following property of canonical bases:

Proposition (Similarity of the structure constants)

We set

$$\begin{split} F_i^{(p)}G^{\mathrm{low}}(b) &= \sum_{\tilde{b}\in B(\infty)} c^{\tilde{b}}_{-pi,b}G^{\mathrm{low}}(\tilde{b}), \\ (e_i')^p(G^{\mathrm{low}}(b)) &= \sum_{\tilde{b}\in B(\infty)} \hat{d}^{i,p}_{b,\tilde{b}}G^{\mathrm{low}}(\tilde{b}). \end{split}$$

Then, for any $b, \hat{b} \in B(\infty), i \in I$ and $p \in \mathbb{Z}_{\geq 0}$, we have $\left(c_{-pi,b}^{\hat{b}}\right)_{<-\Delta_i(d-1)p} = \left(q_i^{\frac{1}{2}d(d-1)} \begin{bmatrix} \varepsilon_i(\hat{b}) \\ p \end{bmatrix}_i \widehat{d}_{b,\widetilde{e}_i^{\varepsilon_i(\hat{b})}\hat{b}}^{i,d} \right)_{<-\Delta_i(d-1)p,}$

where $d := \varepsilon_i(\hat{b}) - p$.

 $\label{eq:reference:arXiv1501.01416} ({\sf Slides: http://www.ms.u-tokyo.ac.jp/~oya})$