Representations of quantized function algebras and the transition matrices from Canonical bases to PBW bases

Hironori Oya

The University of Tokyo

MSJ Spring Meeting 2015
Meiji University, 23/3/2015

Outline

(1) Preliminaries
(2) Our main theorem
(3) Quantized function algebras
(4) Our strategy for proving positivity

Quantized enveloping algebras

- \mathfrak{g} a finite dimensional complex simple Lie algebra
- $U_{q}(\mathfrak{g})=\left\langle E_{i}, F_{i}, K_{i} \mid i \in I\right\rangle_{\mathbb{Q}(q) \text {-algebra }}$ the quantized enveloping algebra $/ \mathbb{Q}(q)$ (a q-analogue of $U(\mathfrak{g})$)
- $U_{q}\left(\mathfrak{n}^{+}\right)=\left\langle E_{i} \mid i \in I\right\rangle_{\mathbb{Q}(q) \text {-algebra }}$

The quantized enveloping algebra $U_{q}(\mathfrak{g})$ has a Hopf algebra structure. In particular, its coproduct Δ is defined as follows:
$\Delta\left(E_{i}\right)=E_{i} \otimes 1+K_{i} \otimes E_{i}, \Delta\left(F_{i}\right)=F_{i} \otimes K_{-i}+1 \otimes F_{i}, \Delta\left(K_{i}\right)=K_{i} \otimes K_{i}$.

Some operations

Definition

We define the $\mathbb{Q}(q)$-algebra involution $\omega: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ by

$$
\omega\left(E_{i}\right)=F_{i}, \omega\left(F_{i}\right)=E_{i}, \omega\left(K_{i}\right)=K_{i}^{-1}
$$

We define the $\mathbb{Q}(q)$-algebra anti-involution $*: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ by

$$
*\left(E_{i}\right)=E_{i}, *\left(F_{i}\right)=F_{i}, *\left(K_{i}\right)=K_{i}^{-1}
$$

We define the \mathbb{Q}-algebra involution $\overline{(\cdot)}: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ by

$$
\overline{E_{i}}=E_{i}, \overline{F_{i}}=F_{i}, \overline{K_{i}}=K_{i}^{-1}, \bar{q}=q^{-1}
$$

PBW bases

Let $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ be a reduced word of the longest element w_{0} of the Weyl group W. (i.e. $w_{0}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{N}}$. In particular, $N:=$ the length of w_{0}.)

Definition (The PBW bases)

The vectors

$$
\left\{E_{\mathbf{i}}^{\mathbf{c}}:=E_{i_{1}}^{\left(c_{1}\right)} T_{i_{1}, 1}^{\prime}\left(E_{i_{2}}^{\left(c_{2}\right)}\right) \cdots T_{i_{1}, 1}^{\prime} T_{i_{2}, 1}^{\prime} \cdots T_{i_{N-1}, 1}^{\prime}\left(E_{i_{N}}^{\left(c_{N}\right)}\right)\right\}_{\mathbf{c}}
$$

$\left(\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{N}\right) \in\left(\mathbb{Z}_{\geqq 0}\right)^{N}\right)$ forms a basis of $U_{q}\left(\mathfrak{n}^{+}\right)$. Here, $T_{i, 1}^{\prime}$ is a q-analogue of "the action of the braid group".

Remark

For any reduced word $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ of w_{0}, we have

$$
\Delta_{+}=\left\{\beta_{\mathbf{i}}^{1}, \beta_{\mathbf{i}}^{2}, \ldots, \beta_{\mathbf{i}}^{N}\right\} \text { where } \beta_{\mathbf{i}}^{k}:=s_{i_{1}} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right)
$$

Canonical bases

Let \mathbf{i} be a reduced word of w_{0}. Then, there uniquely exists a basis $\left\{G^{(\mathbf{c})}\right\}_{\mathbf{c}}$ of $U_{q}\left(\mathfrak{n}^{+}\right)$such that

- $\overline{G^{(\mathbf{c})}}=G^{(\mathbf{c})}$,
- $G^{(\mathbf{c})}=E_{\mathbf{i}}^{\mathbf{c}}+\sum_{\mathbf{d}>\mathbf{c}} \mathbf{i} \zeta_{\mathbf{d}}^{\mathbf{c}} E_{\mathbf{i}}^{\mathbf{d}}$ with $\mathbf{i}_{\mathbf{d}}^{\mathbf{c}} \in q \mathbb{Z}[q]$.

We consider the lexicographic order on $\left(\mathbb{Z}_{\geq 0}\right)^{N}$.

Definition (The canonical basis)

We call $\left\{G^{(\mathbf{c})}\right\}_{\mathbf{c}}$ the canonical basis of $U_{q}\left(\mathfrak{n}^{+}\right)$.

Remark

The definition of canonical basis does not depend on the choice of \mathbf{i}. (The data (c) depend on i.)

Our main theorem

Theorem (Positivity)

Assume that the Lie algebra \mathfrak{g} is of type $A D E$. Take an arbitrary reduced word \mathbf{i} of w_{0}. Then, for any $\mathbf{c} \in\left(\mathbb{Z}_{\geqq 0}\right)^{N}$, we have

$$
G^{(\mathbf{c})}=E_{\mathbf{i}}^{\mathbf{c}}+\sum_{\mathbf{d}>\mathbf{c}}{ }_{\mathbf{i}} \zeta_{\mathbf{d}}^{\mathbf{c}} E_{\mathbf{i}}^{\mathbf{d}} \text { with }_{\mathbf{i}} \zeta_{\mathbf{d}}^{\mathbf{c}} \in q \mathbb{N}[q] .
$$

Remark

In general, it is difficult to describe the explicit form of the element of the canonical basis.

About this theorem

The positivity of these coefficients was originally proved by

- Lusztig (1990) : for the "adapted" reduced word \mathbf{i} of w_{0} (via "geometric realization")
- Kato (2014) : for the arbitrary case (via "categorification")

We gave a new algebraic proof of the above theorem from now on. (It has been recently found that our "calculation procedure" is same as a certain other calculation procedure.)
From now on, we again assume that \mathfrak{g} is a finite dimensional complex simple Lie algebra.

Quantized function algebras

The dual space $U_{q}(\mathfrak{g})^{*}$ of $U_{q}(\mathfrak{g})$ has a $\mathbb{Q}(q)$-algebra structure induced from the coalgebra structure of $U_{q}(\mathfrak{g})$.

Definition (The quantized function algebra)

The quantized function algebra $\mathbb{Q}_{q}[G]$ is a subalgebra of $U_{q}(\mathfrak{g})^{*}$ generated (in fact, spanned) by the matrix coefficients

$$
c_{f, v}^{\lambda} \mapsto(u \mapsto\langle f, u . v\rangle)
$$

here,

- $\lambda \in P_{+}$($=$the set of dominant integral weight),
- $V(\lambda)$ the integrable highest weight $U_{q}(\mathfrak{g})$-module with highest weight λ,
- $f \in V(\lambda)^{*}, v \in V(\lambda)$.

Then, $\mathbb{Q}_{q}[G]$ has a Hopf algebra structure induced from the one of $U_{q}(\mathfrak{g})$ and a left and right $U_{q}(\mathfrak{g})$-algebra structure.

Representation of $\mathbb{Q}_{q}[G]$

$\mathbb{Q}_{q}[G]$ - a quantum analogue of the algebra of regular functions on G (G is the connected simply connected simple complex algebraic group whose Lie algebra is \mathfrak{g}.) The algebra $\mathbb{Q}_{q}[G]$ has infinite dimensional irreducible modules [This point is extremely different from the classical $(=" q=1 ")$ situation!!]:

$$
\left.\mathbb{Q}_{q}[G] \rightarrow \mathbb{Q}_{q_{i}}\left[S L_{2}\right] \curvearrowright V_{i}:=\bigoplus_{m \in \mathbb{Z}_{>_{0}}} \mathbb{Q}(q)|m\rangle\right\rangle_{i} .
$$

(dual to $U_{q_{i}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow U_{q}(\mathfrak{g})$.)

Representation of $\mathbb{Q}_{q}[G]$

Theorem (Soibelman (1990))

Let $w \in W$. Then, for any reduced expression $w=s_{i_{1}} \cdots s_{i_{l}}$, the $\mathbb{Q}_{q}[G]$-module $V_{i_{1}} \otimes \cdots \otimes V_{i_{l}}$ is irreducible and its isomorphism class does not depend on the choice of the reduced expressions. Hence, we denote this module by V_{w}.

Strategy 1

Theorem (O-)

For $x \in U_{q}\left(\mathfrak{n}^{+}\right), \lambda \in P_{+}$and a reduced word \mathbf{i} of w_{0}, we write

$$
x=\sum_{\mathbf{c} \in\left(\mathbb{Z}_{\geqq 0}\right)^{N}} \mathbf{i} \zeta_{\mathbf{c}}^{x} E_{\mathbf{i}}^{\mathbf{c}} \text { with } \mathbf{i}_{\mathbf{i}}^{x} \zeta_{\mathbf{c}}^{x} \in \mathbb{Q}(q), \text { and }
$$

$$
\left.\left.\left(c_{f_{\lambda}, v_{w_{0} \lambda}}^{\lambda} *(x)\right) \cdot|(0)\rangle\right\rangle_{\mathbf{i}}=\sum_{\mathbf{c} \in\left(\mathbb{Z}_{\geqq 0}\right)^{N}} \mathbf{i} \zeta_{\mathbf{c}}^{\lambda, x}|(\mathbf{c})\rangle\right\rangle_{\mathbf{i}} \text { with }_{\mathbf{i}} \zeta_{\mathbf{c}}^{\lambda, x} \in \mathbb{Q}(q)\left(\text { in } V_{w_{0}}\right) .
$$

(Here, f_{λ} is a highest weight vector of $V(\lambda)^{*}$ which sends a fixed highest weight vector v_{λ} of $V(\lambda)$ to 1 , and $v_{w_{0} \lambda}$ is the lowest weight lower global basis element of $V(\lambda)$.)
When $\lambda \in P_{+}$tends to ∞ in the sense that $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle$ tends to ∞ for all $i \in I, \mathbf{i} \zeta_{\mathbf{c}}^{\lambda, x}$ converges to ${ }_{\mathbf{i}} \zeta_{\mathbf{c}}^{x}$ in the complete discrete valuation field $\mathbb{Q}((q))$.

Strategy 2

For sufficiently large L, we set $\lambda_{0}:=2(N+1) L \rho . \rho:=$ the Weyl vector. Then, by the calculation method of the previous theorem, we can obtain

$$
\begin{gathered}
\left.\left(c_{f_{\lambda_{0}}, v_{w_{0} \lambda_{0}}}^{\lambda_{0}} * *\left(G^{(\mathbf{c})}\right)\right) \cdot|(0)\rangle\right\rangle_{\mathbf{i}}= \\
\left.\left.\sum_{\mathbf{d} \geqq \mathbf{c}} \mathbf{i} \zeta_{\mathbf{d}}^{\mathbf{c}}|(\mathbf{d})\rangle\right\rangle_{\mathbf{i}}+q^{L} \sum_{\mathbf{d}^{\prime} \in\left(\mathbb{Z}_{\geqq 0}\right)^{N}} \eta_{\mathbf{d}^{\prime}}\left|\left(\mathbf{d}^{\prime}\right)\right\rangle\right\rangle_{\mathbf{i}} \\
\left.\left(=: \sum_{\mathbf{d} \in\left(\mathbb{Z}_{\geqq 0}\right)^{N}} \mathbf{i} \mathbf{i}^{\prime \prime \mathbf{c}} \mathbf{d}|(\mathbf{d})\rangle\right\rangle_{\mathbf{i}}\right)
\end{gathered}
$$

Strategy 3

On the other hand, we calculate the left-hand side of the previous equality as follows:

$$
\begin{aligned}
& \left.\left(c_{f_{\lambda_{0}}, v_{w_{0} \lambda_{0}}}^{\lambda_{0}} \cdot *\left(G^{(\mathbf{c})}\right)\right) \cdot|(0)\rangle\right\rangle_{\mathbf{i}} \\
& \left.\left.\quad=\sum_{b_{1}^{\prime}, \ldots, b_{N-1}^{\prime} \in B\left(\lambda_{0}\right)} c_{\left(G_{\lambda_{0}}^{\mathrm{low}}\left(b_{0}^{\prime}\right), \cdot\right), G_{\lambda_{0}}^{\mathrm{up}}\left(b_{1}^{\prime}\right)}^{\lambda_{0}} \cdot|0\rangle\right\rangle_{i_{1}} \otimes c_{\left(G_{\lambda_{0}}^{\mathrm{low}}\left(b_{1}^{\prime}\right), \cdot\right), G_{\lambda_{0}}^{\mathrm{up}}\left(b_{2}^{\prime}\right)}^{\lambda_{0}} \cdot|0\rangle\right\rangle_{i_{2}} \\
& \quad \otimes \cdots \otimes c_{\left(G_{\lambda_{0}}^{\left.\mathrm{low}\left(b_{N-1}^{\prime}\right), \cdot\right), v_{w_{0} \lambda_{0}}}{ }^{\lambda_{0}} \cdot|0\rangle\right\rangle_{i_{N}}}
\end{aligned}
$$

Here,

- (, $): V\left(\lambda_{0}\right) \times V\left(\lambda_{0}\right) \rightarrow \mathbb{Q}(q)$ the "good" $\mathbb{Q}(q)$-bilinear form
- $\left\{G_{\lambda_{0}}^{\text {low } / \text { up }}\left(b^{\prime}\right)\right\}_{b^{\prime} \in B\left(\lambda_{0}\right)}$ the lower/upper global basis of $V\left(\lambda_{0}\right)$
- $G_{\lambda_{0}}^{\text {low }}\left(b_{0}^{\prime}\right):=\omega\left(G^{(\mathbf{c})}\right) \cdot v_{\lambda_{0}}$

Strategy 4

We can deduce that:

Proposition

For each $\left.\left.k, c_{\left(G_{\lambda_{0}}^{\text {low }}\left(b_{k-1}^{\prime}\right), \cdot\right), G_{\lambda_{0}}^{\text {up }}\left(b_{k}^{\prime}\right)}^{\lambda_{0}} \cdot|0\rangle\right\rangle_{i_{k}}=p_{k}|c\rangle\right\rangle_{i_{k}}$, with $c:=-\frac{1}{2}\left\langle\mathrm{wt} b_{k-1}^{\prime}+\mathrm{wt} b_{k}^{\prime}, \alpha_{i_{k}}^{\vee}\right\rangle$ and $p_{k} \in q^{-L} \mathbb{Z}[q]$

- $\mathbf{i}_{\mathbf{i}}{\zeta^{\prime \prime}}_{\mathbf{d}}^{\mathbf{c}} \in \mathbb{Z}\left[q^{ \pm 1}\right]$, and
- we may ignore the degree $\geqq N L$ part of the Laurent polynomial p_{k} for any k when calculating the degree $<L$ parts of the Laurent polynomials $\mathbf{i}^{\prime}{ }_{\mathbf{d}}^{\mathbf{c}}$.

Key: "the positivity of q-derivations" (Lusztig)

Remark

In our calculation, we use the following property of canonical bases:

Proposition (Similarity of the structure constants)

We set

$$
\begin{aligned}
& F_{i}^{(p)} G^{\mathrm{low}}(b)=\sum_{\tilde{b} \in B(\infty)} c_{-p i, b}^{\tilde{b}} G^{\mathrm{low}}(\tilde{b}) \\
& \left(e_{i}^{\prime}\right)^{p}\left(G^{\mathrm{low}}(b)\right)=\sum_{\tilde{b} \in B(\infty)} \widehat{d}_{b, \tilde{b}}^{i, p} G^{\mathrm{low}}(\tilde{b})
\end{aligned}
$$

Then, for any $b, \hat{b} \in B(\infty), i \in I$ and $p \in \mathbb{Z}_{\geqq 0}$, we have

$$
\left(c_{-p i, b}^{\hat{b}}\right)_{<-\Delta_{i}(d-1) p}=\left(q_{i}^{\frac{1}{2} d(d-1)}\left[\begin{array}{c}
\varepsilon_{i}(\hat{b}) \\
p
\end{array}\right]_{i} \widehat{d}_{b, e_{i}^{i}, d}^{\varepsilon_{i}(\hat{b})} \hat{b}\right)_{<-\Delta_{i}(d-1) p}
$$

where $d:=\varepsilon_{i}(\hat{b})-p$.
Reference: arXiv1501.01416 (Slides: http://www.ms.u-tokyo.ac.jp/~oya)

