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Quantized enveloping algebras

g a finite dimensional complex simple Lie algebra

Uq(g) = ⟨Ei, Fi,Ki|i ∈ I⟩Q(q)-algebra

the quantized enveloping algebra/Q(q) (a q-analogue of U(g))

Uq(n
+) = ⟨Ei|i ∈ I⟩Q(q)-algebra

The quantized enveloping algebra Uq(g) has a Hopf algebra structure. In
particular, its coproduct ∆ is defined as follows:

∆(Ei) = Ei⊗1+Ki⊗Ei, ∆(Fi) = Fi⊗K−i+1⊗Fi, ∆(Ki) = Ki⊗Ki.
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Some operations

.
Definition
..

......

We define the Q(q)-algebra involution ω : Uq(g) → Uq(g) by

ω(Ei) = Fi, ω(Fi) = Ei, ω(Ki) = K−1
i .

We define the Q(q)-algebra anti-involution ∗ : Uq(g) → Uq(g) by

∗(Ei) = Ei, ∗(Fi) = Fi, ∗(Ki) = K−1
i .

We define the Q-algebra involution (·) : Uq(g) → Uq(g) by

Ei = Ei, Fi = Fi, Ki = K−1
i , q = q−1.
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PBW bases

Let i = (i1, i2, . . . , iN ) be a reduced word of the longest element w0 of the
Weyl group W . (i.e. w0 = si1si2 · · · siN . In particular, N := the length of
w0.)
.
Definition (The PBW bases)
..

......

The vectors{
Ec

i := E
(c1)
i1

T ′
i1,1(E

(c2)
i2

) · · ·T ′
i1,1T

′
i2,1 · · ·T

′
iN−1,1

(E
(cN )
iN

)
}
c(

c = (c1, c2, . . . , cN ) ∈ (Z≧0)
N
)
forms a basis of Uq(n

+). Here, T ′
i,1 is a

q-analogue of “the action of the braid group”.

.
Remark
..

......

For any reduced word i = (i1, i2, . . . , iN ) of w0, we have

∆+ = {β1
i , β

2
i , . . . , β

N
i } where βk

i := si1 · · · sik−1
(αik).
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Canonical bases

Let i be a reduced word of w0. Then, there uniquely exists a basis{
G(c)

}
c
of Uq(n

+) such that

G(c) = G(c),

G(c) = Ec
i +

∑
d>c iζ

c
dE

d
i with iζ

c
d ∈ qZ[q].

We consider the lexicographic order on (Z≧0)
N .

.
Definition (The canonical basis)
..

......We call
{
G(c)

}
c
the canonical basis of Uq(n

+).

.
Remark
..

......

The definition of canonical basis does not depend on the choice of i. (The
data (c) depend on i.)
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Our main theorem

.
Theorem (Positivity)
..

......

Assume that the Lie algebra g is of type ADE. Take an arbitrary reduced
word i of w0. Then, for any c ∈ (Z≧0)

N , we have

G(c) = Ec
i +

∑
d>c

iζ
c
dE

d
i with iζ

c
d ∈ qN[q].

.
Remark
..

......

In general, it is difficult to describe the explicit form of the element of the
canonical basis.
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About this theorem

The positivity of these coefficients was originally proved by

Lusztig (1990) : for the “adapted” reduced word i of w0 (via
“geometric realization”)

Kato (2014) : for the arbitrary case (via “categorification”)

We gave a new algebraic proof of the above theorem from now on. (It has
been recently found that our “calculation procedure” is same as a certain
other calculation procedure.)
From now on, we again assume that g is a finite dimensional complex
simple Lie algebra.
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Quantized function algebras

The dual space Uq(g)
∗ of Uq(g) has a Q(q)-algebra structure induced from

the coalgebra structure of Uq(g).
.
Definition (The quantized function algebra)
..

......

The quantized function algebra Qq[G] is a subalgebra of Uq(g)
∗ generated

(in fact, spanned) by the matrix coefficients

cλf,v 7→ (u 7→ ⟨f, u.v⟩),

here,

λ ∈ P+(= the set of dominant integral weight),

V (λ) the integrable highest weight Uq(g)-module with highest weight
λ,

f ∈ V (λ)∗, v ∈ V (λ).

Then, Qq[G] has a Hopf algebra structure induced from the one of Uq(g)
and a left and right Uq(g)-algebra structure.
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Representation of Qq[G]

Qq[G] - a quantum analogue of the algebra of regular functions on G
(G is the connected simply connected simple complex algebraic group
whose Lie algebra is g.)
The algebra Qq[G] has infinite dimensional irreducible modules [This point
is extremely different from the classical(=“q = 1”) situation!!]:

Qq[G] ↠ Qqi [SL2] ↷ Vi :=
⊕

m∈Z≧0

Q(q)|m⟩⟩i.

(dual to Uqi(sl2) ↪→ Uq(g).)
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Representation of Qq[G]

.
Theorem (Soibelman (1990))
..

......

Let w ∈ W . Then, for any reduced expression w = si1 · · · sil , the
Qq[G]-module Vi1 ⊗ · · · ⊗ Vil is irreducible and its isomorphism class does
not depend on the choice of the reduced expressions.
Hence, we denote this module by Vw.
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Strategy 1

.
Theorem (O-)
..

......

For x ∈ Uq(n
+), λ ∈ P+ and a reduced word i of w0, we write

x =
∑

c∈(Z≧0)
N

iζ
x
cE

c
i with iζ

x
c ∈ Q(q), and

(cλfλ,vw0λ
. ∗ (x)).|(0)⟩⟩i =

∑
c∈(Z≧0)

N

iζ
λ,x
c |(c)⟩⟩i with iζ

λ,x
c ∈ Q(q)(in Vw0).

(Here, fλ is a highest weight vector of V (λ)∗ which sends a fixed highest
weight vector vλ of V (λ) to 1, and vw0λ is the lowest weight lower global
basis element of V (λ).)
When λ ∈ P+ tends to ∞ in the sense that ⟨λ, α∨

i ⟩ tends to ∞ for all
i ∈ I,iζ

λ,x
c converges to iζ

x
c in the complete discrete valuation field Q((q)).
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Strategy 2

For sufficiently large L, we set λ0 := 2(N + 1)Lρ. ρ := the Weyl vector.
Then, by the calculation method of the previous theorem, we can obtain(

cλ0
fλ0 ,vw0λ0

. ∗ (G(c))
)
.|(0)⟩⟩i =

∑
d≧c

iζ
c
d|(d)⟩⟩i + qL

∑
d′∈(Z≧0)

N

ηd′ |(d′)⟩⟩i

with ηd′ ∈ Z[q].

(=:
∑

d∈(Z≧0)
N

iζ
′c
d|(d)⟩⟩i)
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Strategy 3

On the other hand, we calculate the left-hand side of the previous equality
as follows:

(cλ0
fλ0 ,vw0λ0

. ∗ (G(c))).|(0)⟩⟩i

=
∑

b′1,...,b
′
N−1∈B(λ0)

cλ0

(Glow
λ0

(b′0),·),G
up
λ0

(b′1)
.|0⟩⟩i1 ⊗ cλ0

(Glow
λ0

(b′1),·),G
up
λ0

(b′2)
.|0⟩⟩i2

⊗ · · · ⊗ cλ0

(Glow
λ0

(b′N−1),·),vw0λ0

.|0⟩⟩iN .

Here,

( , ) : V (λ0)× V (λ0) → Q(q) the “good” Q(q)-bilinear form{
G

low/up
λ0

(b′)
}
b′∈B(λ0)

the lower/upper global basis of V (λ0)

Glow
λ0

(b′0) := ω(G(c)).vλ0
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Strategy 4

We can deduce that:
.
Proposition
..

......

For each k, cλ0

(Glow
λ0

(b′k−1),·),G
up
λ0

(b′k)
.|0⟩⟩ik = pk|c⟩⟩ik ,

with c := −1
2⟨wt b

′
k−1 +wt b′k, α

∨
ik
⟩ and pk ∈ q−LZ[q]

iζ
′c
d ∈ Z[q±1], and

we may ignore the degree ≧ NL part of the Laurent polynomial pk
for any k when calculating the degree < L parts of the Laurent
polynomials iζ

′c
d.

Key: “the positivity of q-derivations” (Lusztig)
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Remark

In our calculation, we use the following property of canonical bases:
.
Proposition (Similarity of the structure constants)
..

......

We set

F
(p)
i Glow(b) =

∑
b̃∈B(∞)

cb̃−pi,bG
low(b̃),

(e′i)
p(Glow(b)) =

∑
b̃∈B(∞)

d̂i,p
b,b̃
Glow(b̃).

Then, for any b, b̂ ∈ B(∞), i ∈ I and p ∈ Z≧0, we have(
cb̂−pi,b

)
<−∆i(d−1)p

=

(
q

1
2
d(d−1)

i

[
εi(b̂)
p

]
i

d̂i,d

b,ẽ
εi(b̂)
i b̂

)
<−∆i(d−1)p,

where d := εi(b̂)− p.

Reference: arXiv1501.01416 (Slides: http://www.ms.u-tokyo.ac.jp/̃ oya)
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